ブログ
/
/
April 29, 2020

How Email Attackers Are Buying Domain Names to Get Inboxes

Explore how mass domain purchasing allows cyber-criminals to stay ahead of legacy email tools — and how cyber AI stops the threats that slip through.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Apr 2020

It is by now common knowledge that the vast majority of cyber-threats start with an email. In the current working conditions, this is more true than ever – with a recent study reporting a 30,000% increase in phishing, websites, and malware targeting remote users.

Many email security tools struggle to detect threats they encounter for the first time. Attackers know this and are leveraging many techniques to take advantage of this fundamental flaw. This includes automation to mutate common threat variants, resulting in a massive increase in unknown threats. Another technique, which will be the focus of this blog post, is the rapid and widespread creation of new domains in order to evade reputation checks and signature-based detection.

The recent surge in domain creation

While traditional tools have to rely on identifying campaigns and patterns across multiple emails to establish whether or not an email is malicious, Cyber AI technology doesn’t require classifying emails into buckets in order to know they don’t belong. There is no need, therefore, to actively track campaigns. But as security researchers, it’s hard to miss some trends.

Since the coronavirus outbreak, we have seen the number of domains registered related to COVID-19 increase by 130,000. In this time, 60% of all spear phishing threats neutralized by Antigena Email were related to COVID-19 or remote work. Another recent study determined that 10,000 coronavirus-related domains are created every day, with roughly nine out of ten of these either malicious or attempting to generate sales of fake products.

With attackers also taking advantage of changing online behaviors arising from the pandemic, another trend we’ve seen is the proliferation of the keyword ‘Zoom’ in some of the unpopular domains that bypassed traditional tools, as attackers leverage the video conferencing platform’s recent rise in usage.

“I believe that hackers identified coronavirus as something users are desperate to find information on. Panic leads to irrational thinking and people forget the basics of cyber security.”

— COO, Atlas VPN

I recently wrote a blog post on the idea of ‘fearware’ and why it’s so successful. Right now, people are desperate for information, and attackers know this. Cyber-criminals play into fear, uncertainty, and doubt (FUD) through a number of mechanisms, and we have since seen a variety of imaginative attempts to engage recipients. These emails range from fake ‘virus trackers’, to sending emails purporting to be from Amazon, claiming an unmanageable rise in newly registered accounts, and demanding “re-registration” of the recipient’s credit card details should they wish to keep their account.

Domain name purchasing: A vicious cycle

Purchasing thousands of new domains and sending malicious emails en masse is a tried and tested technique that cyber-criminals have been leveraging for decades. Now with automation, they’re doing it faster than ever before.

Here’s why it works.

Traditional security tools work by analyzing emails in isolation, measuring them against static blacklists of ‘known bads’. By way of analogy, the gateway tool here is acting like a security guard standing at the perimeter of an organization’s physical premises, asking every individual who enters: “are you malicious?”

The binary answer to this sole question is extracted by looking at some metadata around the email, including the sender’s IP, their email address domain, and any embedded links or attachments. They analyze this data in a vacuum, and at face value, with no consideration towards the relationship between that data, the recipient, and the rest of the business. They run reputation checks, asking “have I seen this IP or domain before?” Crucially, if the answer is no, they let them straight through.

To spell that out, if the domain is brand new, it won’t have a reputation, and as these traditional tools have a limited ability to identify potential harmful elements via any other means, they have no choice but to let them in by default.

These methods barely scratch the surface of a much wider range of characteristics that a malicious email might contain. And as email threats get ever more sophisticated, the ‘innocent until proven guilty approach’ is not enough. For a comprehensive check, we would want to ask: does the domain have any previous relationship with the recipient? The organization as a whole? Does it look suspiciously visually similar to other domains? Is this the first time we’ve seen an inbound email from this user? Has anybody in the organization ever shared a link with this domain? Has any user ever visited this link?

Legacy tools are blatantly asking the wrong questions, to which attackers know the answers. And usually, they can skirt by these inattentive security guards by paying just a few pennies for new domains.

How to buy your way in

Let’s look at the situation from an attacker’s perspective. They just need one email to land and it could be keys to the kingdom, so an upfront purchase of a few thousand new domains will almost inevitably pay off. And they’d pay the price as long as it’s working and they’re profiting.

This is exactly what attackers are doing. Newly-registered domains consistently get through gateways until these traditional tools are armed with enough information to determine that the domains are bad, by which point thousands or even millions of emails could have been successfully delivered. As soon as the attack infrastructure is worn out, the attackers will abandon it, and very easily just purchase and deploy a new set of domains.

And so, the vicious cycle continues. Like a game of ‘whack-a-mole’, these legacy ‘solutions’ will continue to hammer down on recognized ‘bad’ emails – all the while more malicious domains are being created in the thousands in preparation for the next campaign. This is the ‘Domain Game’, and it’s a hard game for defenders to win.

Asking the right questions

Thankfully, the solution to this problem is as simple as the problem itself. It requires a movement away from the legacy approach and towards deploying technology that is up to par with the speed and scale of today’s attackers.

In the last two years, new technologies have emerged that leverage AI, seeking to understand the human behind the email address. Rather than inspecting incoming traffic at the surface-level and asking binary questions, this paradigm shift away from this insufficient legacy approach asks the right questions: not simply “are you malicious?”, but crucially: “do you belong?”

Informed by a nuanced understanding of the recipient, their peers, and the organization at large, every inbound, outbound, and internal email is analyzed in context, and is then re-analyzed over and over again in light of evolving evidence. Asking the right questions and understanding the human invariably sets a far higher standard for acceptable catch rates with unknown threats on first encounter. This approach far outpaces traditional email defenses which have proven to fail and leave companies and their employees vulnerable to malicious emails sitting in their inboxes.

Rather than desperately bashing away at blacklisted domains and IP addresses in an ill-fated attempt to beat the attackers, we can change the game altogether, tilting the scales in favor of the defenders – securing our inboxes and our organizations at large.

Learn more about Antigena Email.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ