Defending Against Cyber Attacks on San Diego & Barcelona Ports
Discover how Darktrace AI safeguards ports globally against cyber-attacks, including those in San Diego and Barcelona, enhancing maritime cyber security!
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Share
03
Oct 2018
Last summer’s wave of ransomware attacks compromised port terminals and disrupted global shipping. Since then, cyber security has quickly risen to the top of the agenda for the maritime sector. Earlier this year, another port was hit with ransomware, and then, last week, the ports of Barcelona and San Diego revealed that they had been the victims of further ransomware attacks.
Whilst the 2017 attacks were globally devastating, there was no evidence that they deliberately targeted particular sectors; port terminals were merely caught in the indiscriminate wave of attacks. However, the widespread disruption these attacks caused across industry – from shipping to manufacturing – drew attention to the risk of IT cyber-attacks propagating into the industrial sector’s critical control systems. Operational Technology within industrial environments had previously been kept relatively separate from IT systems, and, consequently, relatively immune from cyber-attack. These attacks showed that the recent trend in integrating and unifying IT and OT systems had now exposed these systems to such indiscriminate attacks.
The increasing convergence of IT and OT systems shows no signs of slowing, however. Hyper-connected ‘smart’ ports are bringing efficiency and precision while cutting costs. Yet, the intertwining of the physical and digital across ports remains a significant challenge for the cyber security teams tasked with their defense. Without rushing to conclusions, it is perhaps no surprise that the Port of Barcelona is in the process of a “Digital Port project,” launched last year to promote the digitization of the port environment.
Although specifics have not yet been revealed, the recent attacks in Barcelona and San Diego appear to be targeted. Perhaps the inadvertent success of last year’s ransomware campaign inspired attackers to pursue the maritime sector specifically. Disruptions to Operational Technology can be highly detrimental to the maritime sector – these systems oversee critical port and ship systems. Any compromise could inflict reputational harm, significant financial losses, and physical damage. That we would see ransomware attacks specifically targeting ports was foreseeable. Many in the industry have been expecting and preparing for such an eventuality over the last 12 months. Now that attackers are actively targeting them, the protection of OT systems has become critical.
Darktrace has deployed AI to a number of companies in the maritime sector to specifically mitigate and defend Operational Technology. These systems are highly customized and bespoke, and therefore unsuitable for the use of off-the-shelf IT solutions. Darktrace’s cyber AI is able to automatically tailor to OT environments and learn a unique sense of ‘self’, regardless of vendor or technology platform.
Our AI is actively defending ports across the world – such as Harwich Haven Authority and Belfast Harbour – and protecting them against both targeted and indiscriminate attacks on their OT and IT systems. Defending these environments requires the ability to protect all technology systems, from the oldest PLCs and SCADA systems, to the newest IoT devices. Whether in the cloud, on a vessel, or on the mainland, Darktrace is able to passively defend your systems and identify cyber-threats in real time, without any impact or disruption.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval
What is ClearFake?
As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.
In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.
Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].
Darktrace’s Coverage of ClearFake
Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].
The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.
EtherHiding cover
Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].
In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.
Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.
Autonomous Response
As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.
Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.
Conclusion
ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].
In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.
As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.
Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)
Appendices
Darktrace Model Detections
Process / New Executable Launched
Endpoint / Anomalous Use of Scripting Process
Endpoint / New Suspicious Executable Launched
Endpoint / Process Connection::Unusual Connection from New Process
Autonomous Response Models
Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
List of Indicators of Compromise (IoCs)
weiss.neighb0rrol1[.]ru – URL - Malicious Domain
188.114.96[.]6 – IP – Suspicious Domain
*.neighb0rrol1[.]ru – URL – Malicious Domain
MITRE Tactics
Initial Access, Drive-by Compromise, T1189
User Execution, Execution, T1204
Software Deployment Tools, Execution and Lateral Movement, T1072
The State of Cybersecurity in the Finance Sector: Six Trends to Watch
The evolving cybersecurity threat landscape in finance
The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.
Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.
Six cybersecurity trends in the finance sector for 2026
1. Credential-driven attacks are surging
Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.
2. Data Loss Prevention is an increasing challenge
Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.
Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.
3. Ransomware is evolving toward data theft and extortion
Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.
Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles
This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.
4. Attackers are exploiting edge devices, often pre-disclosure.
VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.
Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.
5. DPRK-linked activity is growing across crypto and fintech.
State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.
Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.
6. Cloud complexity and AI governance gaps are now systemic risks.
Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.
Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.
Building cyber resilience in a shifting threat landscape
The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.
As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.
Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.
Acknowledgements:
The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.