Blog
/
AI
/
November 6, 2022

Behind Yanluowang: Unveiling Cyber Threat Tactics

Discover the latest insights into the Yanluowang leak organization, uncovering its members and tactics.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Dillon Ashmore
Security and Research
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2022

Background of Yanluowang

Yanluowang ransomware, also known as Dryxiphia, was first spotted in October 2021 by Symantec’s Threat Hunter Team. However, it has been operational since August 2021, when a threat actor used it to attack U.S. corporations. Said attack shared similar TTPs with ransomware Thieflock, designed by Fivehands ransomware gangs. This connection alluded to a possible link between the two through the presence or influence of an affiliate. The group has been known for successfully ransoming organisations globally, particularly those in the financial, manufacturing, IT services, consultancy, and engineering sectors.

Yanluowang attacks typically begin with initial reconnaissance, followed by credential harvesting and data exfiltration before finally encrypting the victim’s files. Once deployed on compromised networks, Yanluowang halts hypervisor virtual machines, all running processes and encrypts files using the “.yanluowang” extension. A file with name README.txt, containing a ransom note is also dropped. The note also warns victims against contacting law enforcement, recovery companies or attempting to decrypt the files themselves. Failure to follow this advice would result in distributed denial of service attacks against a victim, its employees and business partners. Followed by another attack, a few weeks later, in which all the victim’s files would be deleted.

The group’s name “Yanluowang” was inspired by the Chinese mythological figure Yanluowang, suggesting the group’s possible Chinese origin. However, the recent leak of chat logs belonging to the group, revealed those involved in the organisation spoke Russian. 

 Leak of Yanluowang’s chat logs

 On the 31st of October, a Twitter user named @yanluowangleaks shared the matrix chat and server leaks of the Yanluowang ransomware gang, alongside the builder and decryption source. In total, six files contained internal conversations between the group’s members. From the analysis of these chats, at least eighteen people have been involved in Yanluowang operations.

Twitter account where the leaks and decryption source were shared
Figure 1: Twitter account where the leaks and decryption source were shared

Potential members: ‘@killanas', '@saint', '@stealer', '@djonny', '@calls', '@felix', '@win32', '@nets', '@seeyousoon', '@shoker', '@ddos', '@gykko', '@loader1', '@guki', '@shiwa', '@zztop', '@al', '@coder1'

Most active members: ‘@saint’, ‘@killanas’, ‘@guki’, ‘@felix’, ‘@stealer’. 

To make the most sense out of the data that we analyzed, we combined the findings into two categories: tactics and organization.

Tactics 

From the leaked chat logs, several insights into the group’s operational security and TTPs were gained. Firstly, members were not aware of each other’s offline identities. Secondly, discussions surrounding security precautions for moving finances were discussed by members @killanas and @felix. The two exchanged recommendations on reliable currency exchange platforms as well as which ones to avoid that were known to leak data to law enforcement. The members also expressed paranoia over being caught with substantial amounts of money and therefore took precautions such as withdrawing smaller amounts of cash or using QR codes for withdrawals.

Additionally, the chat logs exposed the TTPs of Yanluowang. Exchanges between the group’s members @stealer, @calls and @saint, explored the possibilities of conducting attacks against critical infrastructure. One of these members, @call, was also quick to emphasise that Yanluowang would not target the critical infrastructure of former Soviet countries. Beyond targets, the chat logs also highlighted Yanluowang’s use of the ransomware, PayloadBIN but also that attacks that involved it may potentially have been misattributed to another ransomware actor, Evil Corp.

Further insight surrounding Yanluowang’s source code was also gained as it was revealed that it had been previously published on XSS.is as a downloadable file. The conversations surrounding this revealed that two members, @killanas and @saint, suspected @stealer was responsible for the leak. This suspicion was supported by @saint, defending another member whom he had known for eight years. It was later revealed that the code had been shared after a request to purchase it was made by a Chinese national. @saint also used their personal connections to have the download link removed from XSS.is. These connections indicate that some members of Yanluowang are well embedded in the ransomware and wider cybercrime community.

Another insight gained from the leaked chat logs was an expression by @saint in support of Ukraine, stating, “We stand with Ukraine” on the negotiation page of Yanluowang’s website. This action reflects a similar trend observed among threat actors where they have taken sides in the Russia-Ukraine conflict.

Regarding Yanluowang’s engagement with other groups, it was found that a former member of Conti had joined the group. This inference was made by @saint when a conversation regarding the Conti leak revolved around the possible identification of the now Yanluowang member @guki, in the Conti files. It was also commented that Conti was losing a considerable number of its members who were then looking for new work. Conversations about other ransomware groups were had with the mentioning of the REVIL group by @saint, specifically stating that five arrested members of the gang were former classmates. He backed his statement by attaching the article about it, to which @djonny replies that those are indeed REVIL members and that he knows it from his sources.

Organization 

When going through the chat logs, several observations were made that can offer some insights into the group's organizational structure. In one of the leaked files, user @saint was the one to publish the requirements for the group's ".onion" website and was also observed instructing other users on the tasks they had to complete. Based on this, @saint could be considered the leader of the group. Additionally, there was evidence indicating that a few users could be in their 30s or 40s, while most participants are in their 20s.

More details regarding Yanluowang's organizational structure were discussed deeper into the leak. The examples indicate various sub-groups within the Yanlouwang group and that a specific person coordinates each group. From the logs, there is a high probability that @killanas is the leader of the development team and has several people working under him. It is also possible that @stealer is on the same level as @killanas and is potentially the supervisor of another team within the group. This was corroborated when @stealer expressed concerns about the absence of certain group members on several occasions. There is also evidence showing that he was one of three people with access to the source code of the group. 

Role delineation within the group was also quite clear, with each user having specific tasks: DDoS (distributed denial of service) attacks, social engineering, victim negotiations, pentesting or development, to mention a few. When it came to recruiting new members, mostly pentesters, Yanluowang would recruit through XSS.is and Exploit.in forums.

Underground analysis and members’ identification 

From the leaked chat logs, several “.onion” URLs were extracted; however, upon further investigation, each site had been taken offline and removed from the TOR hashring. This suggests that Yanluowang may have halted all operations. One of the users on XSS.is posted a picture showing that the Yanluowang onion website was hacked, stating, “CHECKMATE!! YANLUOWANG CHATS HACKED @YANLUOWANGLEAKS TIME’S UP!!”.

Figure 2: The screenshot of Yanluowang website on Tor (currently offline)

After learning that Yanluowang used Russian Web Forums, we did an additional search to see what we could find about the group and the mentioned nicknames. 

By searching through XSS.Is we managed to identify the user registered as @yanluowang. The date of the registration on the forum dates to 15 March 2022. Curiously, at the time of analysis, we noticed the user was online. There were in total 20 messages posted by @yanluowang, with a few publications indicating the group is looking for new pentesters.

Figure 3: The screenshot of Yanluowang profile on XSS.is 

Figure 4: The screenshot of Yanluowang posts about pentester recruitment on XSS.is 

While going through the messages, it was noticed the reaction posted by another user identified as @Sa1ntJohn, which could be the gang member @saint.

Figure 5: The screenshot of Sa1ntJohn’s profile on XSS.is

Looking further, we identified that user @Ekranoplan published three links to the website doxbin.com containing information about three potential members of the YanLuoWang gang: @killanas/coder, @hardbass and @Joe/Uncle. The profile information was published by the user @Xander2727.

Figure 6: The screenshot of Yanlouwang member-profile leak on XSS.is
Figure 7: The screenshot of @hardbass Yanlouwang member profile leak
Figure 8: The screenshot of @killanas/coder Yanlouwang member profile leak.

If the provided information is correct, two group members are Russian and in their 30s, while another member is Ukrainian and in his 20s. One of the members, @killanas, who was also referenced in chat logs, is identified as the lead developer of the Yanluowang group; giving the interpretation of the chat leaks a high-level of confidence. Another two members, who were not referenced in the logs, took roles as Cracked Software/Malware provider and English translator/Victim Negotiator.

Implications for the wider ransomware landscape

To conclude with the potential implications of this leak, we have corroborated the evidence gathered throughout this investigation and employed contrarian analytical techniques. The ascertained implications that follow our mainline judgement, supporting evidence and our current analytical view on the matter can be categorized into three key components of this leak:

Impact on the ransomware landscape

The leak of Yanluowang’s chat logs has several implications for the broader ransomware landscape. This leak, much like the Conti leak in March, spells the end for Yanluowang operations for the time being, given how much of the group’s inner workings it has exposed. This could have an adverse effect. While Yanluowang did not control as large of a share of the ransomware market as Conti did, their downfall will undoubtedly create a vacuum space for established groups for their market share. The latter being a consequence of the release of their source code and build tools. 

Source code

The release of Yanluowang’s source code has several outcomes. If the recipients have no malintent, it could aid in reverse engineering the ransomware, like how a decryption tool for Yanluowng was released earlier this year. An alternative scenario is that the publication of the source code will increase the reach and deployment of this ransomware in the future, in adapted or modified versions by other threat actors. Reusing leaked material is notorious among ransomware actors, as seen in the past, when Babuk’s source code was leaked and led to the development of several variants based on this leak, including Rook and Pandora. This could also make it harder to attribute attacks to one specific group.

Members

The migration of unexposed Yanluowang members to other ransomware gangs could further add to the proliferation of ransomware groups. Such forms of spreading ransomware have been documented in the past when former Conti members repurposed their tactics to join efforts with an initial access broker, UAC-0098. Yet, the absence of evidence from members expressing and/or acting upon this claim requires further investigation and analysis. However, as there is no evidence of absence – this implication is based on the previously observed behavior from members of other ransomware gangs.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Dillon Ashmore
Security and Research

More in this series

No items found.

Blog

/

Compliance

/

September 5, 2025

Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture

CAF v4.0 cyber assessment frameworkDefault blog imageDefault blog image

What is the Cyber Assessment Framework?

The Cyber Assessment Framework (CAF) acts as guide for organizations, specifically across essential services, critical national infrastructure and regulated sectors, across the UK for assessing, managing and improving their cybersecurity, cyber resilience and cyber risk profile.

The guidance in the Cyber Assessment Framework aligns with regulations such as The Network and Information Systems Regulations (NIS), The Network and Information Security Directive (NIS2) and the Cyber Security and Resilience Bill.

What’s new with the Cyber Assessment Framework 4.0?

On 6 August 2025, the UK’s National Cyber Security Centre (NCSC) released Cyber Assessment Framework 4.0 (CAF v4.0) a pivotal update that reflects the increasingly complex threat landscape and the regulatory need for organisations to respond in smarter, more adaptive ways.

The Cyber Assessment Framework v4.0 introduces significant shifts in expectations, including, but not limited to:

  • Understanding threats in terms of the capabilities, methods and techniques of threat actors and the importance of maintaining a proactive security posture (A2.b)
  • The use of secure software development principles and practices (A4.b)
  • Ensuring threat intelligence is understood and utilised - with a focus on anomaly-based detection (C1.f)
  • Performance of proactive threat hunting with automation where appropriate (C2.a)

This blog post will focus on these components of the framework. However, we encourage readers to get the full scope of the framework by visiting the NCSC website where they can access the full framework here.

In summary, the changes to the framework send a clear signal: the UK’s technical authority now expects organisations to move beyond static rule-based systems and embrace more dynamic, automated defences. For those responsible for securing critical national infrastructure and essential services, these updates are not simply technical preferences, but operational mandates.

At Darktrace, this evolution comes as no surprise. In fact, it reflects the approach we've championed since our inception.

Why Darktrace? Leading the way since 2013

Darktrace was built on the principle that detecting cyber threats in real time requires more than signatures, thresholds, or retrospective analysis. Instead, we pioneered a self-learning approach powered by artificial intelligence, that understands the unique “normal” for every environment and uses this baseline to spot subtle deviations indicative of emerging threats.

From the beginning, Darktrace has understood that rules and lists will never keep pace with adversaries. That’s why we’ve spent over a decade developing AI that doesn't just alert, it learns, reasons, explains, and acts.

With Cyber Assessment Framework v4.0, the bar has been raised to meet this new reality. For technical practitioners tasked with evaluating their organisation’s readiness, there are five essential questions that should guide the selection or validation of anomaly detection capabilities.

5 Questions you should ask about your security posture to align with CAF v4

1. Can your tools detect threats by identifying anomalies?

Cyber Assessment Framework v4.0 principle C1.f has been added in this version and requires that, “Threats to the operation of network and information systems, and corresponding user and system behaviour, are sufficiently understood. These are used to detect cyber security incidents.”

This marks a significant shift from traditional signature-based approaches, which rely on known Indicators of Compromise (IOCs) or predefined rules to an expectation that normal user and system behaviour is understood to an extent enabling abnormality detection.

Why this shift?

An overemphasis on threat intelligence alone leaves defenders exposed to novel threats or new variations of existing threats. By including reference to “understanding user and system behaviour” the framework is broadening the methods of threat detection beyond the use of threat intelligence and historical attack data.

While CAF v4.0 places emphasis on understanding normal user and system behaviour and using that understanding to detect abnormalities and as a result, adverse activity. There is a further expectation that threats are understood in terms of industry specific issues and that monitoring is continually updated  

Darktrace uses an anomaly-based approach to threat detection which involves establishing a dynamic baseline of “normal” for your environment, then flagging deviations from that baseline — even when there’s no known IoCs to match against. This allows security teams to surface previously unseen tactics, techniques, and procedures in real time, whether it’s:

  • An unexpected outbound connection pattern (e.g., DNS tunnelling);
  • A first-time API call between critical services;
  • Unusual calls between services; or  
  • Sensitive data moving outside normal channels or timeframes.

The requirement that organisations must be equipped to monitor their environment, create an understanding of normal and detect anomalous behaviour aligns closely with Darktrace’s capabilities.

2. Is threat hunting structured, repeatable, and improving over time?

CAF v4.0 introduces a new focus on structured threat hunting to detect adverse activity that may evade standard security controls or when such controls are not deployable.  

Principle C2.a outlines the need for documented, repeatable threat hunting processes and stresses the importance of recording and reviewing hunts to improve future effectiveness. This inclusion acknowledges that reactive threat hunting is not sufficient. Instead, the framework calls for:

  • Pre-determined and documented methods to ensure threat hunts can be deployed at the requisite frequency;
  • Threat hunts to be converted  into automated detection and alerting, where appropriate;  
  • Maintenance of threat hunt  records and post-hunt analysis to drive improvements in the process and overall security posture;
  • Regular review of the threat hunting process to align with updated risks;
  • Leveraging automation for improvement, where appropriate;
  • Focus on threat tactics, techniques and procedures, rather than one-off indicators of compromise.

Traditionally, playbook creation has been a manual process — static, slow to amend, and limited by human foresight. Even automated SOAR playbooks tend to be stock templates that can’t cover the full spectrum of threats or reflect the specific context of your organisation.

CAF v4.0 sets the expectation that organisations should maintain documented, structured approaches to incident response. But Darktrace / Incident Readiness & Recovery goes further. Its AI-generated playbooks are bespoke to your environment and updated dynamically in real time as incidents unfold. This continuous refresh of “New Events” means responders always have the latest view of what’s happening, along with an updated understanding of the AI's interpretation based on real-time contextual awareness, and recommended next steps tailored to the current stage of the attack.

The result is far beyond checkbox compliance: a living, adaptive response capability that reduces investigation time, speeds containment, and ensures actions are always proportionate to the evolving threat.

3. Do you have a proactive security posture?

Cyber Assessment Framework v4.0 does not want organisations to detect threats, it expects them to anticipate and reduce cyber risk before an incident ever occurs. That is s why principle A2.b calls for a security posture that moves from reactive detection to predictive, preventative action.

A proactive security posture focuses on reducing the ease of the most likely attack paths in advance and reducing the number of opportunities an adversary has to succeed in an attack.

To meet this requirement, organisations could benefit in looking for solutions that can:

  • Continuously map the assets and users most critical to operations;
  • Identify vulnerabilities and misconfigurations in real time;
  • Model likely adversary behaviours and attack paths using frameworks like MITRE ATT&CK; and  
  • Prioritise remediation actions that will have the highest impact on reducing overall risk.

When done well, this approach creates a real-time picture of your security posture, one that reflects the dynamic nature and ongoing evolution of both your internal environment and the evolving external threat landscape. This enables security teams to focus their time in other areas such as  validating resilience through exercises such as red teaming or forecasting.

4. Can your team/tools customize detection rules and enable autonomous responses?

CAF v4.0 places greater emphasis on reducing false positives and acting decisively when genuine threats are detected.  

The framework highlights the need for customisable detection rules and, where appropriate, autonomous response actions that can contain threats before they escalate:

The following new requirements are included:  

  • C1.c.: Alerts and detection rules should be adjustable to reduce false positives and optimise responses. Custom tooling and rules are used in conjunction with off the shelf tooling and rules;
  • C1.d: You investigate and triage alerts from all security tools and take action – allowing for improvement and prioritization of activities;
  • C1.e: Monitoring and detection personnel have sufficient understanding of operational context and deal with workload effectively as well as identifying areas for improvement (alert or triage fatigue is not present);
  • C2.a: Threat hunts should be turned into automated detections and alerting where appropriate and automation should be leveraged to improve threat hunting.

Tailored detection rules improve accuracy, while automation accelerates response, both of which help satisfy regulatory expectations. Cyber AI Analyst allows for AI investigation of alerts and can dramatically reduce the time a security team spends on alerts, reducing alert fatigue, allowing more time for strategic initiatives and identifying improvements.

5. Is your software secure and supported?  

CAF v4.0 introduced a new principle which requires software suppliers to leverage an established secure software development framework. Software suppliers must be able to demonstrate:  

  • A thorough understanding of the composition and provenance of software provided;  
  • That the software development lifecycle is informed by a detailed and up to date understanding of threat; and  
  • They can attest to the authenticity and integrity of the software, including updates and patches.  

Darktrace is committed to secure software development and all Darktrace products and internally developed systems are developed with secure engineering principles and security by design methodologies in place. Darktrace commits to the inclusion of security requirements at all stages of the software development lifecycle. Darktrace is ISO 27001, ISO 27018 and ISO 42001 Certified – demonstrating an ongoing commitment to information security, data privacy and artificial intelligence management and compliance, throughout the organisation.  

6. Is your incident response plan built on a true understanding of your environment and does it adapt to changes over time?

CAF v4.0 raises the bar for incident response by making it clear that a plan is only as strong as the context behind it. Your response plan must be shaped by a detailed, up-to-date understanding of your organisation’s specific network, systems, and operational priorities.

The framework’s updates emphasise that:

  • Plans must explicitly cover the network and information systems that underpin your essential functions because every environment has different dependencies, choke points, and critical assets.
  • They must be readily accessible even when IT systems are disrupted ensuring critical steps and contact paths aren’t lost during an incident.
  • They should be reviewed regularly to keep pace with evolving risks, infrastructure changes, and lessons learned from testing.

From government expectation to strategic advantage

Cyber Assessment Framework v4.0 signals a powerful shift in cybersecurity best practice. The newest version sets a higher standard for detection performance, risk management, threat hunting software development and proactive security posture.

For Darktrace, this is validation of the approach we have taken since the beginning: to go beyond rules and signatures to deliver proactive cyber resilience in real-time.

-----

Disclaimer:

This document has been prepared on behalf of Darktrace Holdings Limited. It is provided for information purposes only to provide prospective readers with general information about the Cyber Assessment Framework (CAF) in a cyber security context. It does not constitute legal, regulatory, financial or any other kind of professional advice and it has not been prepared with the reader and/or its specific organisation’s requirements in mind. Darktrace offers no warranties, guarantees, undertakings or other assurances (whether express or implied)  that: (i) this document or its content are  accurate or complete; (ii) the steps outlined herein will guarantee compliance with CAF; (iii) any purchase of Darktrace’s products or services will guarantee compliance with CAF; (iv) the steps outlined herein are appropriate for all customers. Neither the reader nor any third party is entitled to rely on the contents of this document when making/taking any decisions or actions to achieve compliance with CAF. To the fullest extent permitted by applicable law or regulation, Darktrace has no liability for any actions or decisions taken or not taken by the reader to implement any suggestions contained herein, or for any third party products, links or materials referenced. Nothing in this document negates the responsibility of the reader to seek independent legal or other advice should it wish to rely on any of the statements, suggestions, or content set out herein.  

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Mariana Pereira
VP, Field CISO

Blog

/

OT

/

September 5, 2025

Rethinking Signature-Based Detection for Power Utility Cybersecurity

power utility cybersecurityDefault blog imageDefault blog image

Lessons learned from OT cyber attacks

Over the past decade, some of the most disruptive attacks on power utilities have shown the limits of signature-based detection and reshaped how defenders think about OT security. Each incident reinforced that signatures are too narrow and reactive to serve as the foundation of defense.

2015: BlackEnergy 3 in Ukraine

According to CISA, on December 23, 2015, Ukrainian power companies experienced unscheduled power outages affecting a large number of customers — public reports indicate that the BlackEnergy malware was discovered on the companies’ computer networks.

2016: Industroyer/CrashOverride

CISA describes CrashOverride malwareas an “extensible platform” reported to have been used against critical infrastructure in Ukraine in 2016. It was capable of targeting industrial control systems using protocols such as IEC‑101, IEC‑104, and IEC‑61850, and fundamentally abused legitimate control system functionality to deliver destructive effects. CISA emphasizes that “traditional methods of detection may not be sufficient to detect infections prior to the malware execution” and recommends behavioral analysis techniques to identify precursor activity to CrashOverride.

2017: TRITON Malware

The U.S. Department of the Treasury reports that the Triton malware, also known as TRISIS or HatMan, was “designed specifically to target and manipulate industrial safety systems” in a petrochemical facility in the Middle East. The malware was engineered to control Safety Instrumented System (SIS) controllers responsible for emergency shutdown procedures. During the attack, several SIS controllers entered a failed‑safe state, which prevented the malware from fully executing.

The broader lessons

These events revealed three enduring truths:

  • Signatures have diminishing returns: BlackEnergy showed that while signatures can eventually identify adapted IT malware, they arrive too late to prevent OT disruption.
  • Behavioral monitoring is essential: CrashOverride demonstrated that adversaries abuse legitimate industrial protocols, making behavioral and anomaly detection more effective than traditional signature methods.
  • Critical safety systems are now targets: TRITON revealed that attackers are willing to compromise safety instrumented systems, elevating risks from operational disruption to potential physical harm.

The natural progression for utilities is clear. Static, file-based defenses are too fragile for the realities of OT.  

These incidents showed that behavioral analytics and anomaly detection are far more effective at identifying suspicious activity across industrial systems, regardless of whether the malicious code has ever been seen before.

Strategic risks of overreliance on signatures

  • False sense of security: Believing signatures will block advanced threats can delay investment in more effective detection methods.
  • Resource drain: Constantly updating, tuning, and maintaining signature libraries consumes valuable staff resources without proportional benefit.
  • Adversary advantage: Nation-state and advanced actors understand the reactive nature of signature defenses and design attacks to circumvent them from the start.

Recommended Alternatives (with real-world OT examples)

 Alternative strategies for detecting cyber attacks in OT
Figure 1: Alternative strategies for detecting cyber attacks in OT

Behavioral and anomaly detection

Rather than relying on signatures, focusing on behavior enables detection of threats that have never been seen before—even trusted-looking devices.

Real-world insight:

In one OT setting, a vendor inadvertently left a Raspberry Pi on a customer’s ICS network. After deployment, Darktrace’s system flagged elastic anomalies in its HTTPS and DNS communication despite the absence of any known indicators of compromise. The alerting included sustained SSL increases, agent‑beacon activity, and DNS connections to unusual endpoints, revealing a possible supply‑chain or insider risk invisible to static tools.  

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Threat intelligence sharing & building toward zero-trust philosophy

Frameworks such as MITRE ATT&CK for ICS provide a common language to map activity against known adversary tactics, helping teams prioritize detections and response strategies. Similarly, information-sharing communities like E-ISAC and regional ISACs give utilities visibility into the latest tactics, techniques, and procedures (TTPs) observed across the sector. This level of intel can help shift the focus away from chasing individual signatures and toward building resilience against how adversaries actually operate.

Real-world insight:

Darktrace’s AI embodies zero‑trust by assuming breach potential and continually evaluating all device behavior, even those deemed trusted. This approach allowed the detection of an anomalous SharePoint phishing attempt coming from a trusted supplier, intercepted by spotting subtle patterns rather than predefined rules. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on critical-national infrastructure.

This reinforces the need to monitor behavioral deviations across the supply chain, not just known bad artifacts.

Defense-in-Depth with OT context & unified visibility

OT environments demand visibility that spans IT, OT, and IoT layers, supported by risk-based prioritization.

Real-world insight:

Darktrace / OT offers unified AI‑led investigations that break down silos between IT and OT. Smaller teams can see unusual outbound traffic or beaconing from unknown OT devices, swiftly investigate across domains, and get clear visibility into device behavior, even when they lack specialized OT security expertise.  

Moreover, by integrating contextual risk scoring, considering real-world exploitability, device criticality, firewall misconfiguration, and legacy hardware exposure, utilities can focus on the vulnerabilities that genuinely threaten uptime and safety, rather than being overwhelmed by CVE noise.  

Regulatory alignment and positive direction

Industry regulations are beginning to reflect this evolution in strategy. NERC CIP-015 requires internal network monitoring that detects anomalies, and the standard references anomalies 15 times. In contrast, signature-based detection is not mentioned once.

This regulatory direction shows that compliance bodies understand the limitations of static defenses and are encouraging utilities to invest in anomaly-based monitoring and analytics. Utilities that adopt these approaches will not only be strengthening their resilience but also positioning themselves for regulatory compliance and operational success.

Conclusion

Signature-based detection retains utility for common IT malware, but it cannot serve as the backbone of security for power utilities. History has shown that major OT attacks are rarely stopped by signatures, since each campaign targets specific systems with customized tools. The most dangerous adversaries, from insiders to nation-states, actively design their operations to avoid detection by signature-based tools.

A more effective strategy prioritizes behavioral analytics, anomaly detection, and community-driven intelligence sharing. These approaches not only catch known threats, but also uncover the subtle anomalies and novel attack techniques that characterize tomorrow’s incidents.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI