Blog
/
Email
/
April 10, 2023

Detecting Malicious Email Activity & AI Impersonating

Discover how two different phishing attempts from some known and unknown senders used a payroll diversion and credential sealing box link to harm users.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

Social engineering has become widespread in the cyber threat landscape in recent years, and the near-universal use of social media today has allowed attackers to research and target victims more effectively. Social engineering involves manipulating users to carry out actions such as revealing sensitive information like login credentials or credit card details. It can also lead to user account compromises, causing huge disruption to an organization’s digital estate. 

As people use social media platforms not only for personal reasons, but also for business purposes, attackers gain information they can exploit in social engineering attacks. For example, a threat actor may attempt to impersonate a known individual or legitimate service to take advantage of a user’s established trust. This is a highly successful method of social engineering because mimicking known contacts makes it difficult for traditional security tools that rely on deny-lists to detect the attack.

In October 2022, Darktrace identified and responded to two separate malicious email campaigns in which threat actors attempted to impersonate known contacts in an effort to compromise customer devices. As it learns the normal behavior of every user in the email system, Darktrace was able to instantly detect these threats and mitigate them autonomously, preventing significant disruption to the customer networks.

Payroll Diversion Fraud Attempt Impersonating a Former Employee 

While a customer in the Canadian energy sector was trialing Darktrace in October 2022, Darktrace/Email™ identified a suspicious email seemingly sent from an employee within the organization. The email was sent to the Senior Director of Human Resources (HR) with a subject line of “Change in payroll Direct Deposit.” The email requested a change in bank account information for an employee. However, Darktrace recognized that the sender was using a free mail address that contained random letters, indicating it may have been algorithmically generated. Since this incident occurred during a trial, Darktrace/Email was not configured to take action. Otherwise, it would have prevented the email from landing in the inbox. In this case though, the email went through, bypassing all other security tools in place.

Although the email was from an unknown sender, the HR director believed the email could have been legitimate as the employee who appeared to be the sender had left the organization seven days prior and no longer had access to their corporate email account. However, after reviewing it in the Darktrace/Email dashboard, the customer grew suspicious and contacted the former employee directly to verify if the request was legitimate. The former employee validated the suspicions by confirming they had sent no such email.

Further investigation by the customer revealed that the former employee had been vocal about their departure on various social media platforms. This gave threat actors valuable information to believably impersonate the former employee and defraud the organization. 

Such attempts to target organizations’ HR departments and divert payroll are common tactics for cyber-criminals and are often identified by Darktrace/Email across the customer base. Darktrace/Email is able to instantly identify the indicators associated with these spoofing attempts and immediately bring them to the attention of the customer’s security team. 

Using Legitimate File Sharing Service to Share a Phishing Link 

On October 7, 2022, a customer in the Singaporean construction sector was targeted by a phishing campaign attempting to impersonate a law firm known to the organization. Almost 200 employees received an email with the subject line “Accepted: Valuation Agreement.” 

Figure 1: Sample of an UI view of the message held showing anomaly indicators, history, association, and validation.

Four days earlier, Darktrace observed communication between another email address associated with the law firm and an employee of the customer. Darktrace/Email noted that it was the first time this correspondent had sent emails to the customer. 

Figure 2: Metrics showing how well the sender’s domain is known within the digital environment.

The emails contained a highly unusual link to a file sharing service, (hxxps://ssvilvensstokes[.]app[.]box[.]com/notes), hidden behind the text “PREVIEW OR PRINT COPY OF DOCUMENT HERE.” Darktrace analysts investigated this event further and found that around 30 similar URLs had been identified as suspicious using OSINT security tools in October 2022, suggesting the customer was not the only target of this phishing campaign.

Figure 3: Preview of the phishing email’s body.
Figure 4: Darktrace’s evaluation of the link contained in the phishing email.

Additional OSINT work revealed that the link directed to a website which appeared to host a PDF file named “Valuation Agreement.” The recipient would then be prompted to follow another link (hulking-citrine-krypton[.]glitch[.]me), again hidden behind the text “OPEN OR ACCESS DOCUMENT HERE” to view the file. Subsequently, the user would be prompted to enter their Microsoft 365 credentials. 

Figure 5: The page displayed when the phishing link was clicked, viewed in a sandbox environment.
Figure 6: Example of a page shown when recipient clicks the second link, accessing “hulking-citrine-krypton[.]glitch[.]me”. 

This page contained the text “This document has been scanned for viruses by Norton Antivirus Security.” This is another example of threat actors’ employing social engineering techniques by impersonating well-known brands, such as established security vendors, to gain the trust of users and increase their likelihood of success.

It is highly probable that a real employee of the law firm had their account hijacked and that a malicious actor was exploiting it to send out these phishing emails en masse as part of a supply chain attack. In such cases, malicious actors rely on their targets’ trust of known contacts to not question departures from their normal conversations. 

Darktrace was able to instantly detect multiple anomalies in these emails, despite the fact that they were seemingly sent by known correspondents. The activity detected automatically triggered model breaches associated with unexpected and visually prominent links. As a result, Darktrace/Email responded by locking the link, stopping users from being able to click it.

Darktrace subsequently identified additional emails from this sender attempting to target other recipients within the company, triggering the model breaches associated with a surge in email sending indicative of a phishing campaign. In response, Darktrace/Email autonomously acted and filed these emails as junk. As more emails were detected across the customer’s environment, the anomaly score of the sender increased and Darktrace ultimately held back over 160 malicious emails, safeguarding recipients from potential account compromise.           

The following Darktrace/Email models were breached throughout the course of this phishing campaign:

  • Unusual/Sender Surge 
  • Unusual/Undisclosed Recipients 
  • Antigena Anomaly 
  • Association/Unlikely Recipient Association 
  • Link/Low Link Association 
  • Link/Visually Prominent Link 
  • Link/Visually Prominent Link Unexpected For Sender 
  • Unusual/New Sender Wide Distribution
  • Unusual/Undisclosed Recipients + New Address Known Domain

Conclusion

Social engineering plays a role in many of the major threats challenging current email cyber security, as attackers can use it to manipulate users into transferring money, revealing credentials, clicking malicious links, and more. 

The above threat stories happened before language generating AI became mainstream with the release of ChatGPT in December 2022. Now, it is even easier for malicious actors to generate sophisticated social engineering emails. By using social media posts as input, social engineering emails written by generative AI can be highly targeted and produced at scale. They often avoid the flags users are trained to look for, like poor grammar and spelling mistakes, and can hide payloads or forgo them entirely.

To mitigate the risk of possible social engineering attempts, it is recommended that organizations implement social media policies that advise employees to be cautious of what they post online and enact procedures to verify if fund transfer requests are legitimate.

Yet these policies are not enough on their own. Darktrace/Email can identify suspicious email traits, whether an email is sent from a known correspondent or an unknown sender. With Self-Learning AI, it knows an organization’s users better than any impersonator could. In this way, Darktrace/Email detects anomalies within emails and neutralizes malicious components at machine-speed, stopping attacks at their earliest stages, before employees fall victim. 

Appendices

List of Indicators of Compromise (IoCs)

Domain:

hxxps://ssvilvensstokes[.]app[.]box[.]com/notes/*?s=* - 1st external link (seen in email)

hxxps://hulking-citrine-krypton[.]glitch[.]me/flk.html - 2nd external link, masked behind “OPEN OR ACCESS DOCUMENT HERE”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI