Blog
/
Email
/
April 10, 2023

Detecting Malicious Email Activity & AI Impersonating

Discover how two different phishing attempts from some known and unknown senders used a payroll diversion and credential sealing box link to harm users.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

Social engineering has become widespread in the cyber threat landscape in recent years, and the near-universal use of social media today has allowed attackers to research and target victims more effectively. Social engineering involves manipulating users to carry out actions such as revealing sensitive information like login credentials or credit card details. It can also lead to user account compromises, causing huge disruption to an organization’s digital estate. 

As people use social media platforms not only for personal reasons, but also for business purposes, attackers gain information they can exploit in social engineering attacks. For example, a threat actor may attempt to impersonate a known individual or legitimate service to take advantage of a user’s established trust. This is a highly successful method of social engineering because mimicking known contacts makes it difficult for traditional security tools that rely on deny-lists to detect the attack.

In October 2022, Darktrace identified and responded to two separate malicious email campaigns in which threat actors attempted to impersonate known contacts in an effort to compromise customer devices. As it learns the normal behavior of every user in the email system, Darktrace was able to instantly detect these threats and mitigate them autonomously, preventing significant disruption to the customer networks.

Payroll Diversion Fraud Attempt Impersonating a Former Employee 

While a customer in the Canadian energy sector was trialing Darktrace in October 2022, Darktrace/Email™ identified a suspicious email seemingly sent from an employee within the organization. The email was sent to the Senior Director of Human Resources (HR) with a subject line of “Change in payroll Direct Deposit.” The email requested a change in bank account information for an employee. However, Darktrace recognized that the sender was using a free mail address that contained random letters, indicating it may have been algorithmically generated. Since this incident occurred during a trial, Darktrace/Email was not configured to take action. Otherwise, it would have prevented the email from landing in the inbox. In this case though, the email went through, bypassing all other security tools in place.

Although the email was from an unknown sender, the HR director believed the email could have been legitimate as the employee who appeared to be the sender had left the organization seven days prior and no longer had access to their corporate email account. However, after reviewing it in the Darktrace/Email dashboard, the customer grew suspicious and contacted the former employee directly to verify if the request was legitimate. The former employee validated the suspicions by confirming they had sent no such email.

Further investigation by the customer revealed that the former employee had been vocal about their departure on various social media platforms. This gave threat actors valuable information to believably impersonate the former employee and defraud the organization. 

Such attempts to target organizations’ HR departments and divert payroll are common tactics for cyber-criminals and are often identified by Darktrace/Email across the customer base. Darktrace/Email is able to instantly identify the indicators associated with these spoofing attempts and immediately bring them to the attention of the customer’s security team. 

Using Legitimate File Sharing Service to Share a Phishing Link 

On October 7, 2022, a customer in the Singaporean construction sector was targeted by a phishing campaign attempting to impersonate a law firm known to the organization. Almost 200 employees received an email with the subject line “Accepted: Valuation Agreement.” 

Figure 1: Sample of an UI view of the message held showing anomaly indicators, history, association, and validation.

Four days earlier, Darktrace observed communication between another email address associated with the law firm and an employee of the customer. Darktrace/Email noted that it was the first time this correspondent had sent emails to the customer. 

Figure 2: Metrics showing how well the sender’s domain is known within the digital environment.

The emails contained a highly unusual link to a file sharing service, (hxxps://ssvilvensstokes[.]app[.]box[.]com/notes), hidden behind the text “PREVIEW OR PRINT COPY OF DOCUMENT HERE.” Darktrace analysts investigated this event further and found that around 30 similar URLs had been identified as suspicious using OSINT security tools in October 2022, suggesting the customer was not the only target of this phishing campaign.

Figure 3: Preview of the phishing email’s body.
Figure 4: Darktrace’s evaluation of the link contained in the phishing email.

Additional OSINT work revealed that the link directed to a website which appeared to host a PDF file named “Valuation Agreement.” The recipient would then be prompted to follow another link (hulking-citrine-krypton[.]glitch[.]me), again hidden behind the text “OPEN OR ACCESS DOCUMENT HERE” to view the file. Subsequently, the user would be prompted to enter their Microsoft 365 credentials. 

Figure 5: The page displayed when the phishing link was clicked, viewed in a sandbox environment.
Figure 6: Example of a page shown when recipient clicks the second link, accessing “hulking-citrine-krypton[.]glitch[.]me”. 

This page contained the text “This document has been scanned for viruses by Norton Antivirus Security.” This is another example of threat actors’ employing social engineering techniques by impersonating well-known brands, such as established security vendors, to gain the trust of users and increase their likelihood of success.

It is highly probable that a real employee of the law firm had their account hijacked and that a malicious actor was exploiting it to send out these phishing emails en masse as part of a supply chain attack. In such cases, malicious actors rely on their targets’ trust of known contacts to not question departures from their normal conversations. 

Darktrace was able to instantly detect multiple anomalies in these emails, despite the fact that they were seemingly sent by known correspondents. The activity detected automatically triggered model breaches associated with unexpected and visually prominent links. As a result, Darktrace/Email responded by locking the link, stopping users from being able to click it.

Darktrace subsequently identified additional emails from this sender attempting to target other recipients within the company, triggering the model breaches associated with a surge in email sending indicative of a phishing campaign. In response, Darktrace/Email autonomously acted and filed these emails as junk. As more emails were detected across the customer’s environment, the anomaly score of the sender increased and Darktrace ultimately held back over 160 malicious emails, safeguarding recipients from potential account compromise.           

The following Darktrace/Email models were breached throughout the course of this phishing campaign:

  • Unusual/Sender Surge 
  • Unusual/Undisclosed Recipients 
  • Antigena Anomaly 
  • Association/Unlikely Recipient Association 
  • Link/Low Link Association 
  • Link/Visually Prominent Link 
  • Link/Visually Prominent Link Unexpected For Sender 
  • Unusual/New Sender Wide Distribution
  • Unusual/Undisclosed Recipients + New Address Known Domain

Conclusion

Social engineering plays a role in many of the major threats challenging current email cyber security, as attackers can use it to manipulate users into transferring money, revealing credentials, clicking malicious links, and more. 

The above threat stories happened before language generating AI became mainstream with the release of ChatGPT in December 2022. Now, it is even easier for malicious actors to generate sophisticated social engineering emails. By using social media posts as input, social engineering emails written by generative AI can be highly targeted and produced at scale. They often avoid the flags users are trained to look for, like poor grammar and spelling mistakes, and can hide payloads or forgo them entirely.

To mitigate the risk of possible social engineering attempts, it is recommended that organizations implement social media policies that advise employees to be cautious of what they post online and enact procedures to verify if fund transfer requests are legitimate.

Yet these policies are not enough on their own. Darktrace/Email can identify suspicious email traits, whether an email is sent from a known correspondent or an unknown sender. With Self-Learning AI, it knows an organization’s users better than any impersonator could. In this way, Darktrace/Email detects anomalies within emails and neutralizes malicious components at machine-speed, stopping attacks at their earliest stages, before employees fall victim. 

Appendices

List of Indicators of Compromise (IoCs)

Domain:

hxxps://ssvilvensstokes[.]app[.]box[.]com/notes/*?s=* - 1st external link (seen in email)

hxxps://hulking-citrine-krypton[.]glitch[.]me/flk.html - 2nd external link, masked behind “OPEN OR ACCESS DOCUMENT HERE”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Isabelle Cheong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI