Blog
/
/
February 25, 2025

Chinese APT Target Royal Thai Police in Malware Campaign

Cado Security Labs (now part of Darktrace) identified a malware campaign targeting the Royal Thai Police, attributed to Chinese APT group Mustang Panda. The campaign uses a disguised LNK file and PDF decoy to deliver the Yokai backdoor.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Feb 2025

Researchers from Cado Security Labs (now part of Darktrace) have identified a malware campaign targeting the Royal Thai Police. The campaign uses seemingly legitimate documents with FBI content to deliver a shortcut file that eventually results in Yokai backdoor being executed and persisting on the victim system. The activity observed in this campaign through this research is consistent with the Chinese APT group Mustang Panda.

Technical Analysis

The initial file is a rar archive named ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.rar (English: Very urgent, please join the cooperation project to train the FBI course.rar). While the initial access is unknown, it is highly likely to have been delivered via phishing email. Inside the rar file is a LNK (shortcut) file ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx.lnk, disguised PDF file and folder named $Recycle.bin.

The shortcut file executes ftp.exe (File Transfer Protocol), which then processes the commands inside the disguised PDF file as an FTP script. FTP scripts are automated scripts that execute a sequence of FTP commands. 

C:\\Windows\\System32\\ftp.exe -s:"แบบตอบรับ.pdf",File size: 58880 File attribute flags: 0x00000020 Drive type: 3 Drive serial number: 0x444b74c2 Volume label:  Local path: C:\\Windows\\System32\\ftp.exe cmd arguments: -s:"แบบตอบรับ.pdf" Relative path: ..\\Windows\\System32\\ftp.exe Icon location: .\\file.docx Link target: <My Computer> C:\\Windows\\System32\\C:\Windows\System32\ftp.exe 

แบบตอบรับ.pdf (english: Response form.pdf) is a fake PDF file containing Windows commands that are executed by cmd.exe. The PDF does not need to be opened by the victim, however if they do the document looks like a response form. 

A close up of a cardAI-generated content may be incorrect.

แบบตอบรับ.pdf (english: Response form.pdf)

A screen shot of a computerAI-generated content may be incorrect.

Commands embedded inside the fake PDF file

These commands move the docx file from the extracted $Recycle.bin folder to the main folder replacing the LNK with the decoy docx file. The “PDF” file in the extracted $Recycle.bin folder is moved to c:\programdata\PrnInstallerNew.exe and executed. 

Inside $Recycle.bin folder

A screenshot of a computerAI-generated content may be incorrect.

Decoy docx file ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx (english:Very urgent, please join the cooperative training project for the FBI course.docx)

The decoy document replaces the shortcut file after it removes itself to remove traces of the infection. The document is not malicious.

File: PrnInstallerNew.exe

MD5: 571c2e8cfcd1669cc1e196a3f8200c4e

PrnInstallerNew.exe is a 32-bit executable that is a trojanized version of  PDF-XChange Driver Installer, a PDF printing software. The malware dynamically resolves calls through GetProcAddress(), storing them in a struct, to evade detection. Malware often avoids hardcoding API function names by constructing them dynamically at runtime, making detection by security tools more difficult. Instead of directly referencing functions like send(), the malware stores individual characters in an array and assembles the function name letter by letter before resolving it with GetProcAddress(). This technique helps bypass security tools, as they scan for known API names within a binary. Once the function name is constructed, it is passed to GetProcAddress(), which retrieves the function's memory address, allowing the malware to execute it indirectly without exposing API calls in their import tables. To enable persistence, the binary adds itself as a registry key “MYAccUsrSysCmd_9EBC4579851B72EE312C449C” in HKEY_CurrentUser/Software/Windows/CurrentVersion/Run; which will cause the malware to execute when the user logs in. 

Registry key added

Additionally, a mutex “MutexHelloWorldSysCmd007” is created, presumably to check for an already running instance. 

A close up of a logoAI-generated content may be incorrect.

Mutex created

After dynamically resolving ws_32.dll, the Windows library for sockets, the malware connects to the IP 154[.]90[.]47[.]77 over TCP Port 443. Using the connect(

A computer screen shot of a codeAI-generated content may be incorrect.

As observed with Yokai backdoor, the hostname is sent to the C2 which will return commands after the validation is satisfied. 

Attribution 

The targeting of the Thai police appears to have been part of a greater campaign targeting Thai officials in the last months of last year. However, targeting of the Thai government is not new as groups, such as Chinese APT groups Mustang Panda and CerenaKeeper have been targeting Thailand for years. [1]

Mustang Panda are a China based APT group who have been active since at least 2014 and tend to target governments and NGOs in Asia, Europe and the United States for espionage. Recent Mustang Pandacampaigns [2], have used similar lures against governments, with similar techniques with decoy documents and shortcut files. While not observed in this campaign, Mustang Panda frequently uses DLL Sideloading to execute malicious payloads under legitimate processes, as observed in Netskope’s research. Instead of DLL Sideloading, this version instead has trojanized a legitimate application. Interestingly one of the reported binaries by Netskope contains code overlap with WispRider, a self-propagating USB malware used by Mustang Panda.

A screenshot of a reportAI-generated content may be incorrect.

Key takeaways

The persistent targeting of Thailand by Chinese APT groups highlights the landscape of cyber espionage in Southeast Asia. As geopolitical tensions and economic competition intensify, Thailand remains a critical focal point for cyber operations aimed at intelligence gathering, political influence, and economic advantage. To mitigate these threats, organizations and government agencies must prioritize robust cybersecurity measures, threat intelligence sharing, and regional cooperation. 

IOCs

B73f59eb689214267ae2b39bd52c33c6  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.rar  

0b88f13e40218fcbc9ce6e1079d45169  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx   

87393d765abd8255b1d2da2d8dc2bf7f  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx.lnk  

571c2e8cfcd1669cc1e196a3f8200c4e  PrnInstallernew.exe  

154[.]90[.]47[.]77  C2

MITRE ATTACK

T1574.002  Hijack Execution Flow: DLL Side-Loading  

T1071.001  Application Layer Protocol: Web Protocols  

T1059.003  Command and Scripting Interpreter: Windows Command Shell  

T1547.001  Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder  

T1113  File and Directory Discovery: File and Directory Discovery  

T1027  Obfuscated Files or Information  

T1036  Masquerading  

T1560.001  Archive Collected Data: Archive via Utility  

T1027.007  Dynamic API Resolution

References

[1] https://www.cyfirma.com/research/apt-profile-mustang-panda/

[2] https://medium.com/@FatzQatz/unveiling-the-mustang-panda-operation-attack-on-thai-parliament-member-ac197a1ad8fa

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI