Blog
/
/
February 25, 2025

Chinese APT Target Royal Thai Police in Malware Campaign

Cado Security Labs (now part of Darktrace) identified a malware campaign targeting the Royal Thai Police, attributed to Chinese APT group Mustang Panda. The campaign uses a disguised LNK file and PDF decoy to deliver the Yokai backdoor.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Feb 2025

Researchers from Cado Security Labs (now part of Darktrace) have identified a malware campaign targeting the Royal Thai Police. The campaign uses seemingly legitimate documents with FBI content to deliver a shortcut file that eventually results in Yokai backdoor being executed and persisting on the victim system. The activity observed in this campaign through this research is consistent with the Chinese APT group Mustang Panda.

Technical Analysis

The initial file is a rar archive named ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.rar (English: Very urgent, please join the cooperation project to train the FBI course.rar). While the initial access is unknown, it is highly likely to have been delivered via phishing email. Inside the rar file is a LNK (shortcut) file ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx.lnk, disguised PDF file and folder named $Recycle.bin.

The shortcut file executes ftp.exe (File Transfer Protocol), which then processes the commands inside the disguised PDF file as an FTP script. FTP scripts are automated scripts that execute a sequence of FTP commands. 

C:\\Windows\\System32\\ftp.exe -s:"แบบตอบรับ.pdf",File size: 58880 File attribute flags: 0x00000020 Drive type: 3 Drive serial number: 0x444b74c2 Volume label:  Local path: C:\\Windows\\System32\\ftp.exe cmd arguments: -s:"แบบตอบรับ.pdf" Relative path: ..\\Windows\\System32\\ftp.exe Icon location: .\\file.docx Link target: <My Computer> C:\\Windows\\System32\\C:\Windows\System32\ftp.exe 

แบบตอบรับ.pdf (english: Response form.pdf) is a fake PDF file containing Windows commands that are executed by cmd.exe. The PDF does not need to be opened by the victim, however if they do the document looks like a response form. 

A close up of a cardAI-generated content may be incorrect.

แบบตอบรับ.pdf (english: Response form.pdf)

A screen shot of a computerAI-generated content may be incorrect.

Commands embedded inside the fake PDF file

These commands move the docx file from the extracted $Recycle.bin folder to the main folder replacing the LNK with the decoy docx file. The “PDF” file in the extracted $Recycle.bin folder is moved to c:\programdata\PrnInstallerNew.exe and executed. 

Inside $Recycle.bin folder

A screenshot of a computerAI-generated content may be incorrect.

Decoy docx file ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx (english:Very urgent, please join the cooperative training project for the FBI course.docx)

The decoy document replaces the shortcut file after it removes itself to remove traces of the infection. The document is not malicious.

File: PrnInstallerNew.exe

MD5: 571c2e8cfcd1669cc1e196a3f8200c4e

PrnInstallerNew.exe is a 32-bit executable that is a trojanized version of  PDF-XChange Driver Installer, a PDF printing software. The malware dynamically resolves calls through GetProcAddress(), storing them in a struct, to evade detection. Malware often avoids hardcoding API function names by constructing them dynamically at runtime, making detection by security tools more difficult. Instead of directly referencing functions like send(), the malware stores individual characters in an array and assembles the function name letter by letter before resolving it with GetProcAddress(). This technique helps bypass security tools, as they scan for known API names within a binary. Once the function name is constructed, it is passed to GetProcAddress(), which retrieves the function's memory address, allowing the malware to execute it indirectly without exposing API calls in their import tables. To enable persistence, the binary adds itself as a registry key “MYAccUsrSysCmd_9EBC4579851B72EE312C449C” in HKEY_CurrentUser/Software/Windows/CurrentVersion/Run; which will cause the malware to execute when the user logs in. 

Registry key added

Additionally, a mutex “MutexHelloWorldSysCmd007” is created, presumably to check for an already running instance. 

A close up of a logoAI-generated content may be incorrect.

Mutex created

After dynamically resolving ws_32.dll, the Windows library for sockets, the malware connects to the IP 154[.]90[.]47[.]77 over TCP Port 443. Using the connect(

A computer screen shot of a codeAI-generated content may be incorrect.

As observed with Yokai backdoor, the hostname is sent to the C2 which will return commands after the validation is satisfied. 

Attribution 

The targeting of the Thai police appears to have been part of a greater campaign targeting Thai officials in the last months of last year. However, targeting of the Thai government is not new as groups, such as Chinese APT groups Mustang Panda and CerenaKeeper have been targeting Thailand for years. [1]

Mustang Panda are a China based APT group who have been active since at least 2014 and tend to target governments and NGOs in Asia, Europe and the United States for espionage. Recent Mustang Pandacampaigns [2], have used similar lures against governments, with similar techniques with decoy documents and shortcut files. While not observed in this campaign, Mustang Panda frequently uses DLL Sideloading to execute malicious payloads under legitimate processes, as observed in Netskope’s research. Instead of DLL Sideloading, this version instead has trojanized a legitimate application. Interestingly one of the reported binaries by Netskope contains code overlap with WispRider, a self-propagating USB malware used by Mustang Panda.

A screenshot of a reportAI-generated content may be incorrect.

Key takeaways

The persistent targeting of Thailand by Chinese APT groups highlights the landscape of cyber espionage in Southeast Asia. As geopolitical tensions and economic competition intensify, Thailand remains a critical focal point for cyber operations aimed at intelligence gathering, political influence, and economic advantage. To mitigate these threats, organizations and government agencies must prioritize robust cybersecurity measures, threat intelligence sharing, and regional cooperation. 

IOCs

B73f59eb689214267ae2b39bd52c33c6  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.rar  

0b88f13e40218fcbc9ce6e1079d45169  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx   

87393d765abd8255b1d2da2d8dc2bf7f  ด่วนมาก เชิญเข้าร่วมโครงการความร่วมมือฝึกอบรมหลักสูตร FBI.docx.lnk  

571c2e8cfcd1669cc1e196a3f8200c4e  PrnInstallernew.exe  

154[.]90[.]47[.]77  C2

MITRE ATTACK

T1574.002  Hijack Execution Flow: DLL Side-Loading  

T1071.001  Application Layer Protocol: Web Protocols  

T1059.003  Command and Scripting Interpreter: Windows Command Shell  

T1547.001  Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder  

T1113  File and Directory Discovery: File and Directory Discovery  

T1027  Obfuscated Files or Information  

T1036  Masquerading  

T1560.001  Archive Collected Data: Archive via Utility  

T1027.007  Dynamic API Resolution

References

[1] https://www.cyfirma.com/research/apt-profile-mustang-panda/

[2] https://medium.com/@FatzQatz/unveiling-the-mustang-panda-operation-attack-on-thai-parliament-member-ac197a1ad8fa

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

Default blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Default blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI