Blog
/
/
May 21, 2020

Securing AWS Cloud Environments

Discover how self-learning AI in AWS environments detects and beats threats early with enterprise-wide analysis.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
May 2020

Cloud platforms transform the way we build digital infrastructure, allowing us to create incredibly innovative environments for business – but often, it’s at the cost of visibility and control.

With complex hybrid and multi-cloud infrastructures becoming an essential part of increasingly diverse digital estates, the journey to the cloud has fundamentally reshaped the traditional paradigm of the network perimeter, while expanding the attack surface at an alarming rate. Meanwhile, traditional security controls still only offer point solutions that rely on retrospective rules and threat signatures and fail to stop novel and advanced attacks.

To shoulder the weight of shared responsibility for cloud security, organizations require the approach offered by Darktrace DETECT & RESPOND. With Self-Learning AI, DETECT continuously learns what normal ‘patterns of life’ look like for every user, device, virtual machine, and container across an organization. By actively developing a bespoke understanding of ‘self,’ the DETECT can identify the subtle anomalies that point to an advanced attack, without any pre-defined assumptions of ‘good’ or ‘bad' and RESPOND can autonomously interfere to stop emerging threats without disrupting business operations.

As more and more businesses turn to AWS to leverage the benefits of cloud infrastructure, gaining visibility and security for AWS-hosted data and applications is absolutely crucial. The advent of AWS VPC traffic mirroring has allowed Darktrace to shine a light on blind spots in our customers’ AWS environments, ensuring that our Cyber AI security platform can stop any type of threat that emerges. With the AI-powered security securing your AWS environment, you can embrace all the benefits of the cloud with confidence.

Self-learning Cyber AI with granular, real-time visibility

VPC traffic mirroring gives our Self-Learning AI access to granular packet data, allowing DETECT to extract hundreds of features from the raw data and build rich behavioral models for our customers’ AWS cloud environments. This real-time visibility to the underlying fabric of AWS environments provided by VPC traffic mirroring helps Darktrace Cyber AI learn ‘on the job,’ continuously adapting as your business evolves. Darktrace provides the only security solution that learns in real time, a critical feature given the speed and scale of development in the cloud.

Unified control: Correlating patterns across infrastructure

Taking a fundamentally unique approach, DETECT actively correlates activity across AWS and beyond – whether your digital ecosystem includes other cloud environments, SaaS applications, or any range of on- and off-premise infrastructure. From a threat detection perspective, this is crucial, as security events detected in one part of an organization are often part of a broader security incident. This ensures that threats in the cloud are not siloed from monitoring of the rest of the infrastructure, nor are the implications for cloud security ignored when intrusions occur elsewhere in the network.

Neutralizing sophisticated and novel attacks

Legacy security controls miss novel and advanced attacks targeting cloud infrastructure. With VPC traffic mirroring supporting Darktrace Cyber AI’s understanding of an organization’s AWS environment, any slight changes from normal behavior that may indicate a potential threat can be detected immediately. This allows the DETECT to catch the full range of cloud-based attacks, from zero-day malware, to stealthy insider threats.

“Darktrace represents a new frontier in AI-based cyber defense. Our team now has complete real-time coverage across our SaaS applications and cloud containers.”

— CIO, City of Las Vegas

How it works: Using VPC traffic mirroring to analyze AWS traffic

For customers leveraging AWS within an IaaS model, Darktrace uses VPC traffic mirroring to collect metadata from mirrored VPC packets in a Darktrace probe known as a ‘vSensor’. The vSensor captures real-time traffic and selectively forwards relevant metadata to a Darktrace cloud instance or on-premise probe. From here, DETECT correlates VPC traffic with cloud, email, network, and SaaS traffic across a customer’s hybrid and multi-cloud infrastructure for analysis.

By utilizing VPC traffic mirroring in this way, the Immune System can perform deep packet inspection on traffic in the customer’s AWS cloud environment, up to and including the application layer. Hundreds of features are extracted from the raw data, ranging from high-level metrics of data flow quantities, to peer relationship meta-data, to specific application layer events. These features allow Darktrace Cyber AI to build rich behavioral models that let it understand normal patterns of life for the organization and detect malicious activity. It is important that Darktrace is able to construct these metrics from the raw data rather than relying on flow logs alone, as flow logs don't provide the required level of granularity or real-time events within connections.

For non-Nitro AWS instances, we deploy lightweight agents known as ‘OS-Sensors’ that feed relevant traffic to a local vSensor and, in turn, to a Darktrace cloud instance or on-premise probe. Once configured, OS-Sensors can easily be scaled as new instances are spun up. Darktrace also offers a specialized OS-Sensor that provides coverage in containerized systems like Docker and Kubernetes.

Richer context with AWS CloudTrail logs

In addition to analyzing data with VPC traffic mirroring, the DETECT also monitors management and data events within AWS. It does so via HTTP requests for logfiles generated by AWS CloudTrail, which monitors events from all AWS services, including:

  • EC2
  • IAM
  • S3
  • VPC
  • Lambda

Different event types produced via CloudTrail are organized by Darktrace into categories based on the action type and the AWS services that generate it. These different categories show up as metrics in the DETECT user interface, the Threat Visualizer. This information is used to provide even richer context in connection with mirrored traffic in VPCs, as well as all cloud, network, email, and SaaS traffic across a customer’s entire digital environment.

Darktrace deployment scenarios for AWS customers

For IaaS environments, Darktrace deploys a vSensor in each cloud environment. Within AWS environments, the vSensor captures real-time traffic with AWS VPC traffic mirroring. The receiving vSensor processes the data and feeds it back to the cloud-based Darktrace instance. AWS customers additionally have the option of deploying a ‘Darktrace Security Module’ to monitor IaaS management and data events at the API level, such as logins, editing virtual servers, or creating new access credentials.

Figure 1: A cloud-only deployment scenario — Darktrace manages a master cloud probe which receives traffic from sensors and connectors in IaaS and/or SaaS environments.

For hybrid IaaS deployments, Darktrace will similarly deploy vSensors, and OS-Sensors as appropriate. Cloud traffic and event data from AWS and any other cloud environments is then fed to a Darktrace probe in the cloud or on-premise network. For the latter scenario, Darktrace will deploy a physical appliance that ingests real-time network traffic via a SPAN port or network tap, allowing it to correlate patterns across the entire digital ecosystem.

Figure 2: A hybrid cloud deployment scenario, with multi-cloud infrastructure across AWS, Azure and GCP

For hybrid SaaS deployments, Darktrace will deploy provider-specific Darktrace Security Modules on either a physical or cloud-based Darktrace probe, in addition to any other relevant vSensors and OS-Sensors in place. SaaS data is then analyzed and correlated with traffic and user behaviors across AWS, other cloud environments, and any on- and off- premise cyber-physical infrastructure.

Figure 3: A hybrid SaaS deployment scenario

Defense against the full range of threats in the cloud

With the deep insight and powerful reaction capabilities of Cyber AI, Darktrace DETECT & RESPOND are the only proven technologies to stop the full range of cyber-threats in the cloud, including:

  • Critical misconfigurations
  • Insider threat
  • Compromised credentials
  • Novel and advanced malware
  • Password brute-force attacks
  • Data exfiltration
  • Lateral movement
  • Man-in-the-middle attacks
  • Crypto-jacking
  • Violations of policy

Case Studies

Crypto mining malware inadvertently installed

Darktrace detected a mistake from a junior DevOps engineer in a multinational organization with workloads across AWS and Azure and leveraging containerized systems like Docker and Kubernetes. The engineer accidentally downloaded an update that included a crypto miner, which led to an infection across multiple cloud production systems.

After the initial infection, the malware started beaconing out to an external command and control server, which was immediately picked up by Darktrace. With the external connection established and the attack mission instructions delivered, the crypto malware infection was then able to rapidly spread across the organization’s expansive cloud infrastructure at machine speed, infecting 20 cloud servers in under 15 seconds.

Extensive visibility into the organization’s AWS environment via VPC traffic mirroring was a key factor allowing Darktrace Cyber AI to identify the scale of the attack. With the dynamic and unified view across the company’s sprawling hybrid and multi-cloud infrastructure provided by Darktrace, the company’s security team was able to contain the attack within minutes, rather than hours or days. Even though the attack moved at machine speed, by leveraging solutions like VPC traffic mirroring to continuously analyze behavior in the cloud, Darktrace caught the threat at an early enough stage – well before the costs could start to mount.

Developer misuse of AWS cloud infrastructure

At an insurance group, a DevOps Engineer was attempting to build a parallel back-up infrastructure within AWS to replicate the organization’s data center production systems. The technical implementation was perfect, and the back-up systems were created – however, the cost of running the system would have been several million dollars per year.

The DevOps Engineer was unaware of the costs associated with the project and kept management in the dark. The cloud infrastructure was launched, and the costs started rising. Yet with real-time access to the company’s AWS environment provided by VPC traffic mirroring, Darktrace’s Cyber AI was immediately alerted to this unusual behavior, allowing the security team to take preventative action immediately.

With Darktrace Cyber AI, embrace the benefits of AWS

As organizations increasingly turn to the cloud and the threat surface continues to expand, security teams need self-learning AI on their side to gain the strongest insights, illuminate every blind spot, and stop all attacks.

By providing an enterprise-wide Cyber AI platform, Darktrace helps teams overcome the traditional security challenge of manually piecing together incidents across disparate corners of an organization. The unified visibility and control offered by Darktrace PREVENT, DETECTRESPOND, & HEAL reduces the complexity and dashboard fatigue that many teams continue to struggle with, while the system’s multi-dimensional insight enhances its decision-making and threat confidence. Darktrace further augments this process with the Immune System’s AI Analyst capability, which takes the additional step of automatically investigating threats detected by Darktrace and producing concise, AI-generated reports that communicate the full scope of an incident.

With the granular, real-time visibility of VPC traffic mirroring Darktrace, you can be certain your AWS cloud environments are always protected.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI