Blog
/
/
May 21, 2020

Securing AWS Cloud Environments

Discover how self-learning AI in AWS environments detects and beats threats early with enterprise-wide analysis.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
May 2020

Cloud platforms transform the way we build digital infrastructure, allowing us to create incredibly innovative environments for business – but often, it’s at the cost of visibility and control.

With complex hybrid and multi-cloud infrastructures becoming an essential part of increasingly diverse digital estates, the journey to the cloud has fundamentally reshaped the traditional paradigm of the network perimeter, while expanding the attack surface at an alarming rate. Meanwhile, traditional security controls still only offer point solutions that rely on retrospective rules and threat signatures and fail to stop novel and advanced attacks.

To shoulder the weight of shared responsibility for cloud security, organizations require the approach offered by Darktrace DETECT & RESPOND. With Self-Learning AI, DETECT continuously learns what normal ‘patterns of life’ look like for every user, device, virtual machine, and container across an organization. By actively developing a bespoke understanding of ‘self,’ the DETECT can identify the subtle anomalies that point to an advanced attack, without any pre-defined assumptions of ‘good’ or ‘bad' and RESPOND can autonomously interfere to stop emerging threats without disrupting business operations.

As more and more businesses turn to AWS to leverage the benefits of cloud infrastructure, gaining visibility and security for AWS-hosted data and applications is absolutely crucial. The advent of AWS VPC traffic mirroring has allowed Darktrace to shine a light on blind spots in our customers’ AWS environments, ensuring that our Cyber AI security platform can stop any type of threat that emerges. With the AI-powered security securing your AWS environment, you can embrace all the benefits of the cloud with confidence.

Self-learning Cyber AI with granular, real-time visibility

VPC traffic mirroring gives our Self-Learning AI access to granular packet data, allowing DETECT to extract hundreds of features from the raw data and build rich behavioral models for our customers’ AWS cloud environments. This real-time visibility to the underlying fabric of AWS environments provided by VPC traffic mirroring helps Darktrace Cyber AI learn ‘on the job,’ continuously adapting as your business evolves. Darktrace provides the only security solution that learns in real time, a critical feature given the speed and scale of development in the cloud.

Unified control: Correlating patterns across infrastructure

Taking a fundamentally unique approach, DETECT actively correlates activity across AWS and beyond – whether your digital ecosystem includes other cloud environments, SaaS applications, or any range of on- and off-premise infrastructure. From a threat detection perspective, this is crucial, as security events detected in one part of an organization are often part of a broader security incident. This ensures that threats in the cloud are not siloed from monitoring of the rest of the infrastructure, nor are the implications for cloud security ignored when intrusions occur elsewhere in the network.

Neutralizing sophisticated and novel attacks

Legacy security controls miss novel and advanced attacks targeting cloud infrastructure. With VPC traffic mirroring supporting Darktrace Cyber AI’s understanding of an organization’s AWS environment, any slight changes from normal behavior that may indicate a potential threat can be detected immediately. This allows the DETECT to catch the full range of cloud-based attacks, from zero-day malware, to stealthy insider threats.

“Darktrace represents a new frontier in AI-based cyber defense. Our team now has complete real-time coverage across our SaaS applications and cloud containers.”

— CIO, City of Las Vegas

How it works: Using VPC traffic mirroring to analyze AWS traffic

For customers leveraging AWS within an IaaS model, Darktrace uses VPC traffic mirroring to collect metadata from mirrored VPC packets in a Darktrace probe known as a ‘vSensor’. The vSensor captures real-time traffic and selectively forwards relevant metadata to a Darktrace cloud instance or on-premise probe. From here, DETECT correlates VPC traffic with cloud, email, network, and SaaS traffic across a customer’s hybrid and multi-cloud infrastructure for analysis.

By utilizing VPC traffic mirroring in this way, the Immune System can perform deep packet inspection on traffic in the customer’s AWS cloud environment, up to and including the application layer. Hundreds of features are extracted from the raw data, ranging from high-level metrics of data flow quantities, to peer relationship meta-data, to specific application layer events. These features allow Darktrace Cyber AI to build rich behavioral models that let it understand normal patterns of life for the organization and detect malicious activity. It is important that Darktrace is able to construct these metrics from the raw data rather than relying on flow logs alone, as flow logs don't provide the required level of granularity or real-time events within connections.

For non-Nitro AWS instances, we deploy lightweight agents known as ‘OS-Sensors’ that feed relevant traffic to a local vSensor and, in turn, to a Darktrace cloud instance or on-premise probe. Once configured, OS-Sensors can easily be scaled as new instances are spun up. Darktrace also offers a specialized OS-Sensor that provides coverage in containerized systems like Docker and Kubernetes.

Richer context with AWS CloudTrail logs

In addition to analyzing data with VPC traffic mirroring, the DETECT also monitors management and data events within AWS. It does so via HTTP requests for logfiles generated by AWS CloudTrail, which monitors events from all AWS services, including:

  • EC2
  • IAM
  • S3
  • VPC
  • Lambda

Different event types produced via CloudTrail are organized by Darktrace into categories based on the action type and the AWS services that generate it. These different categories show up as metrics in the DETECT user interface, the Threat Visualizer. This information is used to provide even richer context in connection with mirrored traffic in VPCs, as well as all cloud, network, email, and SaaS traffic across a customer’s entire digital environment.

Darktrace deployment scenarios for AWS customers

For IaaS environments, Darktrace deploys a vSensor in each cloud environment. Within AWS environments, the vSensor captures real-time traffic with AWS VPC traffic mirroring. The receiving vSensor processes the data and feeds it back to the cloud-based Darktrace instance. AWS customers additionally have the option of deploying a ‘Darktrace Security Module’ to monitor IaaS management and data events at the API level, such as logins, editing virtual servers, or creating new access credentials.

Figure 1: A cloud-only deployment scenario — Darktrace manages a master cloud probe which receives traffic from sensors and connectors in IaaS and/or SaaS environments.

For hybrid IaaS deployments, Darktrace will similarly deploy vSensors, and OS-Sensors as appropriate. Cloud traffic and event data from AWS and any other cloud environments is then fed to a Darktrace probe in the cloud or on-premise network. For the latter scenario, Darktrace will deploy a physical appliance that ingests real-time network traffic via a SPAN port or network tap, allowing it to correlate patterns across the entire digital ecosystem.

Figure 2: A hybrid cloud deployment scenario, with multi-cloud infrastructure across AWS, Azure and GCP

For hybrid SaaS deployments, Darktrace will deploy provider-specific Darktrace Security Modules on either a physical or cloud-based Darktrace probe, in addition to any other relevant vSensors and OS-Sensors in place. SaaS data is then analyzed and correlated with traffic and user behaviors across AWS, other cloud environments, and any on- and off- premise cyber-physical infrastructure.

Figure 3: A hybrid SaaS deployment scenario

Defense against the full range of threats in the cloud

With the deep insight and powerful reaction capabilities of Cyber AI, Darktrace DETECT & RESPOND are the only proven technologies to stop the full range of cyber-threats in the cloud, including:

  • Critical misconfigurations
  • Insider threat
  • Compromised credentials
  • Novel and advanced malware
  • Password brute-force attacks
  • Data exfiltration
  • Lateral movement
  • Man-in-the-middle attacks
  • Crypto-jacking
  • Violations of policy

Case Studies

Crypto mining malware inadvertently installed

Darktrace detected a mistake from a junior DevOps engineer in a multinational organization with workloads across AWS and Azure and leveraging containerized systems like Docker and Kubernetes. The engineer accidentally downloaded an update that included a crypto miner, which led to an infection across multiple cloud production systems.

After the initial infection, the malware started beaconing out to an external command and control server, which was immediately picked up by Darktrace. With the external connection established and the attack mission instructions delivered, the crypto malware infection was then able to rapidly spread across the organization’s expansive cloud infrastructure at machine speed, infecting 20 cloud servers in under 15 seconds.

Extensive visibility into the organization’s AWS environment via VPC traffic mirroring was a key factor allowing Darktrace Cyber AI to identify the scale of the attack. With the dynamic and unified view across the company’s sprawling hybrid and multi-cloud infrastructure provided by Darktrace, the company’s security team was able to contain the attack within minutes, rather than hours or days. Even though the attack moved at machine speed, by leveraging solutions like VPC traffic mirroring to continuously analyze behavior in the cloud, Darktrace caught the threat at an early enough stage – well before the costs could start to mount.

Developer misuse of AWS cloud infrastructure

At an insurance group, a DevOps Engineer was attempting to build a parallel back-up infrastructure within AWS to replicate the organization’s data center production systems. The technical implementation was perfect, and the back-up systems were created – however, the cost of running the system would have been several million dollars per year.

The DevOps Engineer was unaware of the costs associated with the project and kept management in the dark. The cloud infrastructure was launched, and the costs started rising. Yet with real-time access to the company’s AWS environment provided by VPC traffic mirroring, Darktrace’s Cyber AI was immediately alerted to this unusual behavior, allowing the security team to take preventative action immediately.

With Darktrace Cyber AI, embrace the benefits of AWS

As organizations increasingly turn to the cloud and the threat surface continues to expand, security teams need self-learning AI on their side to gain the strongest insights, illuminate every blind spot, and stop all attacks.

By providing an enterprise-wide Cyber AI platform, Darktrace helps teams overcome the traditional security challenge of manually piecing together incidents across disparate corners of an organization. The unified visibility and control offered by Darktrace PREVENT, DETECTRESPOND, & HEAL reduces the complexity and dashboard fatigue that many teams continue to struggle with, while the system’s multi-dimensional insight enhances its decision-making and threat confidence. Darktrace further augments this process with the Immune System’s AI Analyst capability, which takes the additional step of automatically investigating threats detected by Darktrace and producing concise, AI-generated reports that communicate the full scope of an incident.

With the granular, real-time visibility of VPC traffic mirroring Darktrace, you can be certain your AWS cloud environments are always protected.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI