Blog
/
/
July 9, 2019

Insights on Shamoon 3 Data-Wiping Malware

Gain insights into Shamoon 3 and learn how to protect your organization from its destructive capabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2019

Responsible for some of the “most damaging cyber-attacks in history” since 2012, the Shamoon malware wipes compromised hard drives and overwrites key system processes, intending to render infected machines unusable. During a trial period in the network of a global company, Darktrace observed a Shamoon-powered cyber-attack on December 10, 2018 — when several Middle Eastern firms were impacted by a new variant of the malware.

While there has been detailed reporting on the malware files and wiper modules that these latest Shamoon attacks employed, the complete cyber kill chain involved remains poorly understood, while the intrusions that led to the malware’s eventual “detonation” last December has not received nearly as much coverage. As a consequence, this blog post will focus on the insights that Darktrace’s cyber AI generated regarding (a) the activity of the infected devices during the “detonation” and (b) the indicators of compromise that most likely represent lateral movement activity during the weeks prior.

A high-level overview of major events leading up to the detonation on December 10th.

In the following, we will dive into that timeline more deeply in reverse chronological order, going back in time to trace the origins of the attack. Let’s begin with zero hour.

December 10: 42 devices “detonate”

A bird's-eye perspective of how Darktrace identified the alerts in December 2018.

What immediately strikes the analyst’s eye is the fact that a large accumulation of alerts, indicated by the red rectangle above, took place on December 10, followed by complete network silence over the subsequent four days.

These highlighted alerts represent Darktrace’s detection of unusual network scans on remote port 445 that were conducted by 42 infected devices. These devices proceeded to scan more machines — none of which were among those already infected. Such behavior indicates that the compromised devices started scanning and were wiped independently from each other, instead of conducting worming-style activity during the detonation of the malware. The initial scanning device started its scan at 12:56 p.m. UTC, while the last scanning device started its scan at 2:07 p.m. UTC.

Not only was this activity readily apparent from the bird’s-eye perspective shown above, the detonating devices also created the highest-priority Darktrace alerts over a several day period: “Device / Network Scan” and “Device / Expanded Network Scan”:

Moreover, when investigating “Devices — Overall Score,” the detonating devices rank as the most critical assets for the time period December 8–11:

Darktrace AI generated all of the above alerts because they represented significant anomalies from the normal ‘pattern of life’ that the AI had learned for each user and device on the company’s network. Crucially, none of the alerts were the product of predefined ‘rules and signatures’ — the mechanism that conventional security tools rely on to detect cyber-threats. Rather, the AI revealed the activity because the scans were unusual for the devices given their precise nature and timing, demonstrating the necessity of the such a nuanced approach in catching elusive threats like Shamoon. Of further importance is that the company’s network consists of around 15,000 devices, meaning that a rules-based approach without the ability to prioritize the most serious threats would have drowned out the Shamoon alerts in noise.

Now that we’ve seen how cyber AI sounded the alarms during the detonation itself, let’s investigate the various indicators of suspicious lateral movement that precipitated the events of December 10. Most of this activity happened in brief bursts, each of which could have been spotted and remediated if Darktrace had been closely monitored.

November 19: Unusual Remote Powershell Usage (WinRM)

One such burst of unusual activity occurred on November 19, when Darktrace detected 14 devices — desktops and servers alike — that all successfully used the WinRM protocol. None of these devices had previously used WinRM, which is also unusual for the organization’s environment as a whole. Conversely, Remote PowerShell is quite often abused in intrusions during lateral movement. The devices involved did not classify as traditional administrative devices, making their use of WinRM even more suspicious.

Note the clustering of the WinRM activity as indicated by the timestamp on the left.

October 29–31: Scanning, Unusual PsExec & RDP Brute Forcing

Another burst of likely lateral movement occurred between October 29 and 31, when two servers were seen using PsExec in an unusual fashion. No PsExec activity had been observed in the network before or after these detections, prompting Darktrace to flag the behavior. One of the servers conducted an ICMP Ping sweep shortly before the lateral movement. Not only did both servers start using PsExec on the same day, they also used SMBv1 — which, again, was very unusual for the network.

Most legitimate administrative activity involving PsExec these days uses SMBv2. The graphic below shows several Darktrace alerts on one of the involved servers — take note of the chronology of detections at the bottom of the graphic. This clearly reads like an attacker’s diary: ICMP scan, SMBv1 usage, and unusual PsExec usage, followed by new remote service controls. This server was among the top five highest ranking devices during the analyzed time period and was easy to identify.

Following the PsExec use, the servers also started an anomalous amount of remote services via the srvsvc and svcctl pipes over SMB. They did so by starting services on remote devices with which they usually did not communicate — using SMBv1, of course. Some of the attempted communication failed due to access violation and access permission errors. Both are often seen during malicious lateral movement.

Additional context around the SMBv1 and remote srvsvc pipe activity. Note the access failure.

Thanks to Darktrace’s deep packet inspection, we can see exactly what happened on the application layer. Darktrace highlights any unusual or new activity in italics below the connections — we can easily see that the SMB activity is not only unusual because of SMBv1 being used, but also because this server had never used this type of SMB activity remotely to those particular destinations before. We can also observe remote access to the winreg pipe — likely indicating more lateral movement and persistence mechanisms being established.

The other server conducted some targeted address scanning on the network on October 29, employing typical lateral movement ports 135, 139 and 445:

Another device was observed to conduct RDP brute forcing on October 29 around the same time as the above address scan. The desktop made an unusual amount of RDP connections to another internal server.

A clear plateau in increased internal connections (blue) can be seen. Every colored dot on top represents an RDP brute force detection. This was again a clear-cut detection not drowned in other noise — these were the only RDP brute force detections for a several-month monitoring time window.

October 9–11: Unusual Credential Usage

Darktrace identifies the unusual use of credentials — for instance, if administrative credentials are used on client device on which they are not commonly used. This might indicate lateral movement where service accounts or local admin accounts have been compromised.

Darktrace identified another cluster of activity that is likely representing lateral movement, this time involving unusual credential usage. Between October 9 and 11, Darktrace identified 17 cases of new administrative credentials being used on client devices. While new administrative credentials were being used from time to time on devices as part of normal administrative activity, this strong clustering of unusual admin credential usage was outstanding. Additionally, Darktrace also identified the source of some of the credentials being used as unusual.

Conclusion

Having observed a live Shamoon infection within Darktrace, there are a few key takeaways. While the actual detonation on December 10 was automated, the intrusion that built up to it was most likely manual. The fact that all detonating devices started their malicious activity roughly at the same time — without scanning each other — indicates that the payload went off based on a trigger like a scheduled task. This is in line with other reporting on Shamoon 3.

In the weeks leading up to December 10, there were various significant signs of lateral movement that occurred in disparate bursts — indicating a ‘low-and-slow’ manual intrusion.

The adversaries used classic lateral movement techniques like RDP brute forcing, PsExec, WinRM usage, and the abuse of stolen administrative credentials.

While the organization in question had a robust security posture, an attacker only needs to exploit one vulnerability to bring down an entire system. During the lifecycle of the attack, the Darktrace Enterprise Immune System identified the threatening activity in real time and provided numerous suggested actions that could have prevented the Shamoon attack at various stages. However, human action was not taken, while the organization had yet to activate Antigena, Darktrace’s autonomous response solution, which could have acted in the security team’s stead.

Despite having limited scope during the trial period, the Enterprise Immune System was able to detect the lateral movement and detonation of the payload, which was indicative of the malicious Shamoon virus activity. A junior analyst could have easily identified the activity, as high-severity alerts were consistently generated, and the likely infected devices were at the top of the suspicious devices list.

Darktrace Antigena would have prevented the movement responsible for the spread of the virus, while also sending high-severity alerts to the security team to investigate the activity. Even the scanning on port 445 from the detonating devices would have been shut down, as it presented a significant deviation from the known behavior of all scanning devices, which would have further limited the virus’s spread, and ultimately, spared the company and its devices from attack.


Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI