Blog
/
Network
/
August 27, 2024

Decrypting the Matrix: How Darktrace Uncovered a KOK08 Ransomware Attack

In May 2024, a Darktrace customer was affected by KOK08, a ransomware strain commonly used by the Matrix ransomware family. Learn more about the tactics used by this ransomware case, including double extortion, and how Darktrace is able to detect and respond to such threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Christina Kreza
Cyber Analyst
Decrypting the Matrix: How Darktrace Uncovered a KOK08 Ransomware AttackDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Aug 2024

What is Matrix Ransomware?

Matrix is a ransomware family that first emerged in December 2016, mainly targeting small to medium-sized organizations across the globe in countries including the US, Belgium, Germany, Canada and the UK [1]. Although the reported number of Matrix ransomware attacks has remained relatively low in recent years, it has demonstrated ongoing development and gradual improvements to its tactics, techniques, and procedures (TTPs).

How does Matrix Ransomware work?

In earlier versions, Matrix utilized spam email campaigns, exploited Windows shortcuts, and deployed RIG exploit kits to gain initial access to target networks. However, as the threat landscape changed so did Matrix’s approach. Since 2018, Matrix has primarily shifted to brute-force attacks, targeting weak credentials on Windows machines accessible through firewalls. Attackers often exploit common and default credentials, such as “admin”, “password123”, or other unchanged default settings, particularly on systems with Remote Desktop Protocol (RDP) enabled [2] [3].

Darktrace observation of Matrix Ransomware tactics

In May 2024, Darktrace observed an instance of KOK08 ransomware, a specific strain of the Matrix ransomware family, in which some of these ongoing developments and evolutions were observed. Darktrace detected activity indicative of internal reconnaissance, lateral movement, data encryption and exfiltration, with the affected customer later confirming that credentials used for Virtual Private Network (VPN) access had been compromised and used as the initial attack vector.

Another significant tactic observed by Darktrace in this case was the exfiltration of data following encryption, a hallmark of double extortion. This method is employed by attacks to increase pressure on the targeted organization, demanding ransom not only for the decryption of files but also threatening to release the stolen data if their demands are not met. These stakes are particularly high for public sector entities, like the customer in question, as the exposure of sensitive information could result in severe reputational damage and legal consequences, making the pressure to comply even more intense.

Darktrace’s Coverage of Matrix Ransomware

Internal Reconnaissance and Lateral Movement

On May 23, 2024, Darktrace / NETWORK identified a device on the customer’s network making an unusually large number of internal connections to multiple internal devices. Darktrace recognized that this unusual behavior was indicative of internal scanning activity. The connectivity observed around the time of the incident indicated that the Nmap attack and reconnaissance tool was used, as evidenced by the presence of the URI “/nice ports, /Trinity.txt.bak”.

Although Nmap is a crucial tool for legitimate network administration and troubleshooting, it can also be exploited by malicious actors during the reconnaissance phase of the attack. This is a prime example of a ‘living off the land’ (LOTL) technique, where attackers use legitimate, pre-installed tools to carry out their objectives covertly. Despite this, Darktrace’s Self-Learning AI had been continually monitoring devices across the customers network and was able to identify this activity as a deviation from the device’s typical behavior patterns.

The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 1: The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 2: Cyber AI Analyst Investigation into the ‘Scanning of Multiple Devices' incident.

Darktrace subsequently observed a significant number of connection attempts using the RDP protocol on port 3389. As RDP typically requires authentication, multiple connection attempts like this often suggest the use of incorrect username and password combinations.

Given the unusual nature of the observed activity, Darktrace’s Autonomous Response capability would typically have intervened, taking actions such as blocking affected devices from making internal connections on a specific port or restricting connections to a particular device. However, Darktrace was not configured to take autonomous action on the customer’s network, and thus their security team would have had to manually apply any mitigative measures.

Later that day, the same device was observed attempting to connect to another internal location via port 445. This included binding to the server service (srvsvc) endpoint via DCE/RPC with the “NetrShareEnum” operation, which was likely being used to list available SMB shares on a device.

Over the following two days, it became clear that the attackers had compromised additional devices and were actively engaging in lateral movement. Darktrace detected two more devices conducting network scans using Nmap, while other devices were observed making extensive WMI requests to internal systems over DCE/RPC. Darktrace recognized that this activity likely represented a coordinated effort to map the customer’s network and identity further internal devices for exploitation.

Beyond identifying the individual events of the reconnaissance and lateral movement phases of this attack’s kill chain, Darktrace’s Cyber AI Analyst was able to connect and consolidate these activities into one comprehensive incident. This not only provided the customer with an overview of the attack, but also enabled them to track the attack’s progression with clarity.

Furthermore, Cyber AI Analyst added additional incidents and affected devices to the investigation in real-time as the attack unfolded. This dynamic capability ensured that the customer was always informed of the full scope of the attack. The streamlined incident consolidation and real-time updates saved valuable time and resources, enabling quicker, more informed decision-making during a critical response window.

Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.
Figure 3: Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.

File Encryption

On May 28, 2024, another device was observed connecting to another internal location over the SMB filesharing protocol and accessing multiple files with a suspicious extension that had never previously been observed on the network. This activity was a clear sign of ransomware infection, with the ransomware altering the files by adding the “KOK08@QQ[.]COM” email address at the beginning of the filename, followed by a specific pattern of characters. The string consistently followed a pattern of 8 characters (a mix of uppercase and lowercase letters and numbers), followed by a dash, and then another 8 characters. After this, the “.KOK08” extension was appended to each file [1][4].

Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Figure 4: Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Cyber AI Analyst Encryption Information identifying the ransomware encryption activity,
Figure 5: Cyber AI Analyst Encryption Information identifying the ransomware encryption activity.

Data Exfiltration

Shortly after the encryption event, another internal device on the network was observed uploading an unusually large amount of data to the rare external endpoint 38.91.107[.]81 via SSH. The timing of this activity strongly suggests that this exfiltration was part of a double extortion strategy. In this scenario, the attacker not only encrypts the target’s files but also threatens to leak the stolen data unless a ransom is paid, leveraging both the need for decryption and the fear of data exposure to maximize pressure on the victim.

The full impact of this double extortion tactic became evident around two months later when a ransomware group claimed possession of the stolen data and threatened to release it publicly. This development suggested that the initial Matrix ransomware attackers may have sold the exfiltrated data to a different group, which was now attempting to monetize it further, highlighting the ongoing risk and potential for exploitation long after the initial attack.

External data being transferred from one of the involved internal devices during and after the encryption took place.
Figure 6: External data being transferred from one of the involved internal devices during and after the encryption took place.

Unfortunately, because Darktrace’s Autonomous Response capability was not enabled at the time, the ransomware attack was able to escalate to the point of data encryption and exfiltration. However, Darktrace’s Security Operations Center (SOC) was still able to support the customer through the Security Operations Support service. This allowed the customer to engage directly with Darktrace’s expert analysts, who provided essential guidance for triaging and investigating the incident. The support from Darktrace’s SOC team not only ensured the customer had the necessary information to remediate the attack but also expedited the entire process, allowing their security team to quickly address the issue without diverting significant resources to the investigation.

Conclusion

In this Matrix ransomware attack on a Darktrace customer in the public sector, malicious actors demonstrated an elevated level of sophistication by leveraging compromised VPN credentials to gain initial access to the target network. Once inside, they exploited trusted tools like Nmap for network scanning and lateral movement to infiltrate deeper into the customer’s environment. The culmination of their efforts was the encryption of files, followed by data exfiltration via SSH, suggesting that Matrix actors were employing double extortion tactics where the attackers not only demanded a ransom for decryption but also threatened to leak sensitive information.

Despite the absence of Darktrace’s Autonomous Response at the time, its anomaly-based approach played a crucial role in detecting the subtle anomalies in device behavior across the network that signalled the compromise, even when malicious activity was disguised as legitimate.  By analyzing these deviations, Darktrace’s Cyber AI Analyst was able to identify and correlate the various stages of the Matrix ransomware attack, constructing a detailed timeline. This enabled the customer to fully understand the extent of the compromise and equipped them with the insights needed to effectively remediate the attack.

Credit to Christina Kreza (Cyber Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

·       Device / Network Scan

·       Device / Attack and Recon Tools

·       Device / Possible SMB/NTLM Brute Force

·       Device / Suspicious SMB Scanning Activity

·       Device / New or Uncommon SMB Named Pipe

·       Device / Initial Breach Chain Compromise

·       Device / Multiple Lateral Movement Model Breaches

·       Device / Large Number of Model Breaches from Critical Network Device

·       Device / Multiple C2 Model Breaches

·       Device / Lateral Movement and C2 Activity

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / New or Uncommon Service Control

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Data Sent to Rare Domain

·       Anomalous Connection / Uncommon 1 GiB Outbound

·       Unusual Activity / Enhanced Unusual External Data Transfer

·       Unusual Activity / SMB Access Failures

·       Compromise / Ransomware / Suspicious SMB Activity

·       Compromise / Suspicious SSL Activity

List of Indicators of Compromise (IoCs)

·       .KOK08 -  File extension - Extension to encrypted files

·       [KOK08@QQ[.]COM] – Filename pattern – Prefix of the encrypted files

·       38.91.107[.]81 – IP address – Possible exfiltration endpoint

MITRE ATT&CK Mapping

·       Command and control – Application Layer Protocol – T1071

·       Command and control – Web Protocols – T1071.001

·       Credential Access – Password Guessing – T1110.001

·       Discovery – Network Service Scanning – T1046

·       Discovery – File and Directory Discovery – T1083

·       Discovery – Network Share Discovery – T1135

·       Discovery – Remote System Discovery – T1018

·       Exfiltration – Exfiltration Over C2 Channer – T1041

·       Initial Access – Drive-by Compromise – T1189

·       Initial Access – Hardware Additions – T1200

·       Lateral Movement – SMB/Windows Admin Shares – T1021.002

·       Reconnaissance – Scanning IP Blocks – T1595.001

References

[1] https://unit42.paloaltonetworks.com/matrix-ransomware/

[2] https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-matrix-report.pdf

[3] https://cyberenso.jp/en/types-of-ransomware/matrix-ransomware/

[4] https://www.pcrisk.com/removal-guides/10728-matrix-ransomware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Christina Kreza
Cyber Analyst

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI