Blog
/
Email
/
June 25, 2024

Following up on our Conversation: Detecting & Containing a LinkedIn Phishing Attack with Darktrace

Darktrace/Email detected a phishing attack that had originated from LinkedIn, where the attacker impersonated a well known construction company to conduct a credential harvesting attack on the target. Darktrace’s ActiveAI Security Platform played a critical role in investigating the activity and initiating real-time responses that were outside the physical capability of human security teams.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Note: Real organization, domain and user names have been modified and replaced with fictitious names to maintain anonymity.  

Social media cyber-attacks

Social media is a known breeding ground for cyber criminals to easily connect with a near limitless number of people and leverage the wealth of personal information shared on these platforms to defraud the general public.  Analysis suggests even the most tech savvy ‘digital natives’ are vulnerable to impersonation scams over social media, as criminals weaponize brands and trends, using the promise of greater returns to induce sensitive information sharing or fraudulent payments [1].

LinkedIn phishing

As the usage of a particular social media platform increases, cyber criminals will find ways to exploit the increasing user base, and this trend has been observed with the rise in LinkedIn scams in recent years [2].  LinkedIn is the dominant professional networking site, with a forecasted 84.1million users by 2027 [3].  This platform is data-driven, so users are encouraged to share information publicly, including personal life updates, to boost visibility and increase job prospects [4] [5].  While this helps legitimate recruiters to gain a good understanding of the user, an attacker could also leverage the same personal content to increase the sophistication and success of their social engineering attempts.  

Darktrace detection of LinkedIn phishing

Darktrace detected a Software-as-a-Service (SaaS) compromise affecting a construction company, where the attack vector originated from LinkedIn (outside the monitoring of corporate security tools), but then pivoted to corporate email where a credential harvesting payload was delivered, providing the attacker with credentials to access a corporate file storage platform.  

Because LinkedIn accounts are typically linked to an individual’s personal email and are most commonly accessed via the mobile application [6] on personal devices that are not monitored by security teams, it can represent an effective initial access point for attackers looking to establish an initial relationship with their target. Moreover, user behaviors to ignore unsolicited emails from new or unknown contacts are less frequently carried over to platforms like LinkedIn, where interactions with ‘weak ties’ as opposed to ‘strong ties’ are a better predictor of job mobility [7]. Had this attack been allowed to continue, the threat actor could have leveraged access to further information from the compromised business cloud account to compromise other high value accounts, exfiltrate sensitive data, or defraud the organization.

LinkedIn phishing attack details

Reconnaissance

The initial reconnaissance and social engineering occurred on LinkedIn and was thus outside the purview of corporate security tools, Darktrace included.

However, the email domain “hausconstruction[.]com” used by the attacker in subsequent communications appears to be a spoofed domain impersonating a legitimate construction company “haus[.]com”, suggesting the attacker may have also impersonated an employee of this construction company on LinkedIn.  In addition to spoofing the domain, the attacker seemingly went further to register “hausconstruction.com” on a commercial web hosting platform.  This is a technique used frequently not just to increase apparent legitimacy, but also to bypass traditional security tools since newly registered domains will have no prior threat intelligence, making them more likely to evade signature and rules-based detections [8].  In this instance, open-source intelligence (OSINT) sources report that the domain was created several months earlier, suggesting this may have been part of a targeted attack on construction companies.  

Initial Intrusion

It was likely that during the correspondence over LinkedIn, the target user was solicited into following up over email regarding a prospective construction project, using their corporate email account.  In a probable attempt to establish a precedent of bi-directional correspondence so that subsequent malicious emails would not be flagged by traditional security tools, the attacker did not initially include suspicious links, attachments or use solicitous or inducive language within their initial emails.

Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Figure 1: Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.
Figure 2: Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.  

To accomplish the next stage of their attack, the attacker shared a link, hidden behind the inducing text “VIEW ALL FILES”, to a malicious file using the Hightail cloud storage service. This is also a common method employed by attackers to evade detection, as this method of file sharing does not involve attachments that can be scanned by traditional security tools, and legitimate cloud storage services are less likely to be blocked.

OSINT analysis on the malicious link link shows the file hosted on Hightail was a HTML file with the associated message “Following up on our LinkedIn conversation”.  Further analysis suggests the file contained obfuscated Javascript that, once opened, would automatically redirect the user to a malicious domain impersonating a legitimate Microsoft login page for credential harvesting purposes.  

The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Figure 3: The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Screenshot of fraudulent Microsoft Sign In page hosted on the malicous credential harvesting domain.
Figure 4: Screenshot of fraudulent Microsoft Sign In page hosted on the malicious credential harvesting domain.

Although there was prior email correspondence with the attacker, this email was not automatically deemed safe by Darktrace and was further analyzed for unusual properties and unusual communications for the recipient and the recipient’s peer group.  

Darktrace determined that:

  • It was unusual for this file storage solution to be referenced in communications to the user and the wider network
  • Textual properties of the email body suggested a high level of inducement from the sender, with a high level of focus on the phishing link.
  • The full link contained suspicious properties suggesting it is high risk.
Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.
Figure 5: Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.  

Based on these anomalies, Darktrace initially moved the phishing email to the junk folder and locked the link, preventing the user from directly accessing the malicious file hosted on Hightail.  However, the customer’s security team released the email, likely upon end-user request, allowing the target user to access the file and ultimately enter their credentials into that credential harvesting domain.

Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.
Figure 6: Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.

Lateral Movement

Correspondence between the attacker and target continued for two days after the credential harvesting payload was delivered.  Five days later, Darktrace detected an unusual login using multi-factor authentication (MFA) from a rare external IP and ASN that coincided with Darktrace/Email logs showing access to the credential harvesting link.

This attempt to bypass MFA, known as an Office365 Shell WCSS attack, was likely achieved by inducing the target to enter their credentials and legitimate MFA token into the fake Microsoft login page. This was then relayed to Microsoft by the attacker and used to obtain a legitimate session. The attacker then reused the legitimate token to log into Exchange Online from a different IP and registered their own device for MFA.

Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.
Figure 7: Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.

Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge.
Figure 8: Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge. Highlighted in orange and red is the malicious activity using Chrome.

The IP addresses used by the attacker appear to be part of anonymization infrastructure, but are not associated with any known indicators of compromise (IoCs) that signature-based detections would identify [9] [10].

In addition to  logins being observed within half an hour of each other from multiple geographically impossible locations (San Francisco and Phoenix), the unexpected usage of Chrome browser, compared to Edge browser previously used, provided Darktrace with further evidence that this activity was unlikely to originate from the legitimate user.  Although the user was a salesperson who frequently travelled for their role, Darktrace’s Self-Learning AI understood that the multiple logins from these locations was highly unusual at the user and group level, and coupled with the subsequent unexpected account modification, was a likely indicator of account compromise.  

Accomplish mission

Although the email had been manually released by the security team, allowing the attack to propagate, additional layers of defense were triggered as Darktrace's Autonomous Response initiated “Disable User” actions upon detection of the multiple unusual logins and the unauthorized registration of security information.  

However, the customer had configured Autonomous Response to require human confirmation, therefore no actions were taken until the security team manually approved them over two hours later. In that time, access to mail items and other SharePoint files from the unusual IP address was detected, suggesting a potential loss of confidentiality to business data.

Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.
Figure 9: Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.

However, it appears that the attacker was able to maintain access to the compromised account, as login and mail access events from 199.231.85[.]153 continued to be observed until the afternoon of the next day.  

Conclusion

This incident demonstrates the necessity of AI to security teams, with Darktrace’s ActiveAI Security Platform detecting a sophisticated phishing attack where human judgement fell short and initiated a real-time response when security teams could not physically respond as fast.  

Security teams are very familiar with social engineering and impersonation attempts, but these attacks remain highly prevalent due to the widespread adoption of technologies that enable these techniques to be deployed with great sophistication and ease.  In particular, the popularity of information-rich platforms like LinkedIn that are geared towards connecting with unknown people make it an attractive initial access point for malicious attackers.

In the second half of 2023 alone, over 200 thousand fake profiles were reported by members on LinkedIn [11].  Fake profiles can be highly sophisticated, use professional images, contain compelling descriptions, reference legitimate company listings and present believable credentials.  

It is unrealistic to expect end users to defend themselves against such sophisticated impersonation attempts. Moreover, it is extremely difficult for human defenders to recognize every fraudulent interaction amidst a sea of fake profiles. Instead, defenders should leverage AI, which can conduct autonomous investigations without human biases and limitations. AI-driven security can ensure successful detection of fraudulent or malicious activity by learning what real users and devices look like and identifying deviations from their learned behaviors that may indicate an emerging threat.

Appendices

Darktrace Model Detections

DETECT/ Apps

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compliance / M365 Security Information Modified

RESPOND/ Apps

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Unusual Activity Block

DETECT & RESPOND/ Email

·      Link / High Risk Link + Low Sender Association

·      Link / New Correspondent Classified Link

·      Link / Watched Link Type

·      Antigena Anomaly

·      Association / Unknown Sender

·      History / New Sender

·      Link / Link to File Storage

·      Link / Link to File Storage + Unknown Sender

·      Link / Low Link Association

List of IoCs

·      142.252.106[.]251 - IP            - Possible malicious IP used by attacker during cloud account compromise

·      199.231.85[.]153 – IP - Probable malicious IP used by attacker during cloud account compromise

·      vukoqo.hebakyon[.]com – Endpoint - Credential harvesting endpoint

MITRE ATT&CK Mapping

·      Resource Development - T1586 - Compromise Accounts

·      Resource Development - T1598.003 – Spearphishing Link

·      Persistence - T1078.004 - Cloud Accounts

·      Persistence - T1556.006 - Modify Authentication Process: Multi-Factor Authentication

·      Reconnaissance - T1593.001 – Social Media

·      Reconnaissance - T1598 – Phishing for Information

·      Reconnaissance - T1589.001 – Credentials

·      Reconnaissance - T1591.002 – Business Relationships

·      Collection - T1111 – Multifactor Authentication Interception

·      Collection - T1539 – Steal Web Session Cookie

·      Lateral Movement - T1021.007 – Cloud Services

·      Lateral Movement - T1213.002 - Sharepoint

References

[1] Jessica Barker, Hacked: The secrets behind cyber attacks, (London: Kogan Page, 2024), p. 130-146.

[2] https://www.bitdefender.co.uk/blog/hotforsecurity/5-linkedin-scams-and-how-to-avoid-them/

[3] https://www.washingtonpost.com/technology/2023/08/31/linkedin-personal-posts/

[4] https://www.forbes.com/sites/joshbersin/2012/05/21/facebook-vs-linkedin-whats-the-difference/

[5] https://thelinkedblog.com/2022/3-reasons-why-you-should-make-your-profile-public-1248/

[6] https://www.linkedin.com/pulse/50-linkedin-statistics-every-professional-should-ti9ue

[7] https://www.nytimes.com/2022/09/24/business/linkedin-social-experiments.html

[8] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

[9] https://spur.us/context/142.252.106[.]251

[10] https://spur.us/context/199.231.85[.]153

[11]https://www.statista.com/statistics/1328849/linkedin-number-of-fake-accounts-detected-and-removed

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI