Blog
/
/
October 15, 2024

Navigating Buying and Adoption Journeys for AI Cybersecurity Tools

More and more security teams are adopting AI-powered cybersecurity solutions, but first-time buyers may not know how to evaluate new vendors and tools. This blog covers questions to consider at each stage of the AI adoption journey to ensure return on investment.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Oct 2024

Enterprise AI tools go mainstream

In this dawning Age of AI, CISOs are increasingly exploring investments in AI security tools to enhance their organizations’ capabilities. AI can help achieve productivity gains by saving time and resources, mining intelligence and insights from valuable data, and increasing knowledge sharing and collaboration.  

While investing in AI can bring immense benefits to your organization, first-time buyers of AI cybersecurity solutions may not know where to start. They will have to determine the type of tool they want, know the options available, and evaluate vendors. Research and understanding are critical to ensure purchases are worth the investment.  

Challenges of a muddied marketplace

Key challenges in AI purchasing come from consumer doubt and lack of vendor transparency. The AI software market is buzzing with hype and flashy promises, which are not necessarily going to be realized immediately. This has fostered uncertainty among potential buyers, especially in the AI cybersecurity space.  

As Gartner writes, “There is a general lack of transparency and understanding about how AI-enhanced security solutions leverage AI and the effectiveness of those solutions within real-world SecOps. This leads to trust issues among security leaders and practitioners, resulting in slower adoption of AI features” [1].  

Similarly, only 26% of security professionals report a full understanding of the different types of AI in use within security products.

Given this widespread uncertainty generated through vague hype, buyers must take extra care when considering new AI tools to adopt.  

Goals of AI adoption

Buyers should always start their journeys with objectives in mind, and a universal goal is to achieve return on investment. When organizations adopt AI, there are key aspects that will signal strong payoff. These include:  

  • Wide-ranging application across operations and areas of the business
  • Actual, enthusiastic adoption and application by the human security team  
  • Integration with the rest of the security stack and existing workflows
  • Business and operational benefits, including but not limited to:  
  • Reduced risk
  • Reduced time to response
  • Reduced potential downtime, damage, and disruption
  • Increased visibility and coverage
  • Improved SecOps workflows
  • Decreased burden on teams so they can take on more strategic tasks  

Ideally, most or all these measurements will be fulfilled. It is not enough for AI tools to benefit productivity and workflows in theory, but they must be practically implemented to provide return on investment.  

Investigation before investment

Before investing in AI tools, buyers should ask questions pertaining to each stage of the adoption journey. The answers to these questions will not only help buyers gauge if a tool could be worth the investment, but also plan how the new tool will practically fit into the organization’s existing technology and workflows.  

Figure 1: Initial questions to consider when starting to shop for AI [2].

These questions are good to imagine how a tool will fit into your organization and determine if a vendor is worth further evaluation. Once you decide a tool has potential use and feasibility in your organization, it is time to dive deeper and learn more.  

Ask vendors specific questions about their technology. This information will most likely not be on their websites, and since it involves intellectual property, it may require an NDA.  

Find a longer list of questions to ask vendors and what to look for in their responses in the white paper “CISO’s Guide to Buying AI.”

Committing to transparency amidst the AI hype

For security teams to make the most out of new AI tools, they must trust the AI. Especially in an AI marketplace full of hype and obfuscation, transparency should be baked into both the descriptions of the AI tool and the tool’s functionality itself. With that in mind, here are some specifics about what techniques make up Darktrace’s AI.  

Darktrace as an AI cybersecurity vendor

Darktrace has been using AI technology in cybersecurity for over 10 years. As a pioneer in the space, we have made innovation part of our process.  

The Darktrace ActiveAI Security Platform™ uses multi-layered AI that trains on your unique business operations data for tailored security across the enterprise. This approach ensures that the strengths of one AI technique make up for the shortcomings of another, providing well-rounded and reliable coverage. Our models are always on and always learning, allowing your team to stop attacks in real time.  

The machine learning techniques used in our solution include:

  • Unsupervised machine learning
  • Multiple Clustering Techniques
  • Multiple anomaly detection models in tandem analyzing data across hundreds of metrics
  • Bayesian probabilistic methods
  • Bayesian metaclassifier for autonomous fine-tuning of unsupervised machine learning models
  • Deep learning engines
  • Graph theory
  • Applied supervised machine learning for investigative AI  
  • Neural networks
  • Reinforcement Learning
  • Generative and applied AI
  • Natural Language Processing (NLP) and Large Language Models (LLMs)
  • Post-processing models

Additionally, since Darktrace focuses on using the customer’s data across its entire digital estate, it brings a range of advantages in data privacy, interpretability, and data transfer costs.  

Building trust with Darktrace AI

Darktrace further supports the human security team’s adoption of our technology by building trust. To do that, we designed our platform to give your team visibility and control over the AI.  

Instead of functioning as a black box, our products focus on interpretability and sharing confidence levels. This includes specifying the threshold of what triggered a certain alert and the details of the AI Analyst’s investigations to see how it reached its conclusions. The interpretability of our AI uplevels and upskills the human security team with more information to drive investigations and remediation actions.  

For complete control, the human security team can modify all the detection and response thresholds for our model alerts to customize them to fit specific business preferences.  

Conclusion

CISO’s are increasingly considering investing in AI cybersecurity tools, but in this rapidly growing field, it’s not always clear what to look for.  

Buyers should first determine their goals for a new AI tool, then research possible vendors by reviewing validation and asking deeper questions. This will reveal if a tool is a good match for the organization to move forward with investment and adoption.  

As leaders in the AI cybersecurity industry, Darktrace is always ready to help you on your AI journey.  

CISOs guide to buying AI white paper cover

How to evaluate an AI cybersecurity vendor

Download the white paper to learn how buyers should approach purchasing AI-based solutions. It includes:

  • Key steps for selecting AI cybersecurity tools
  • Questions to ask and responses to expect from vendors
  • Understand tools available and find the right fit
  • Ensure AI investments align with security goals and needs

References

  1. Gartner, April 17, 2024, “Emerging Tech: Navigating the Impact of AI on SecOps Solution Development.”  
  1. Inspired by Gartner, May 14, 2024, “Presentation Slides: AI Survey Reveals AI Security and Privacy Leads to Improved ROI” and NHS England, September, 18, 2020, “A Buyer’s Guide to AI in Health and Care,” Available at: https://transform.england.nhs.uk/ai-lab/explore-all-resources/adopt-ai/a-buyers-guide-to-ai-in-health-and-care/  
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI