Blog
/
Network
/
June 19, 2023

Darktrace Detection of 3CX Supply Chain Attack

Explore how the 3CX supply chain compromise was uncovered, revealing key insights into the detection of sophisticated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jun 2023

Ever since the discovery of the SolarWinds hack that affected tens of thousands of organizations around the world in 2020, supply chain compromises have remained at the forefront of the minds of security teams and continue to pose a significant threat to their business operations. 

Supply chain compromises can have far-reaching implications, from disrupting an organization’s daily operations, incurring huge financial and reputational damage, to affecting the critical infrastructure of entire countries. As such, it is essential for organizations to have effective security measures in place able to identify and halt these attacks at the earliest possible stage.

In March 2023 the 3CX Desktop application became the latest victim of a supply chain compromise dubbed as the “SmoothOperator” by SentinelOne. This application is used by over 600,000 companies worldwide and the customer list contains high-profile customers across a variety of industries [2]. The 3CX Desktop application is a Voice over Internet Protocol (VoIP) communication software for enterprises that allows for chats, video calls, and voice calls. [3] The 3CX installers for both Windows and macOS systems were affected by information stealing malware. Researchers were able to discern that threat actors also known as UNC 4736 related to financially motivated North Korean operators also known as AppleJeus were responsible for the supply chain compromise.  Researchers have also linked it to another supply chain compromise that occurred prior on the Trading Technologies X_TRADER platform, making this the first known cascading software supply chain compromise used to distribute malware on a wide scale and still be able to align operator interests. [3] Customer reports following the compromise began to surface about the 3CX software being picked up as malicious by several cybersecurity vendors such as CrowdStrike, SentinelOne, and Palo Alto Networks. [6] 

By leveraging integrations with other security vendors like CrowdStrike and SentinelOne, Darktrace DETECT™ was able to identify activity from the “SmoothOperator” across the customer base at multiple stages of the kill chain in March 2023. Darktrace RESPOND™ was then able to autonomously intervene against these emerging threats, preventing significant disruption to customer networks. 

Background on the first known cascading supply chain attack 

Initial Access

In April 2023, security researchers identified the initial target in this story was not the 3CX desktop application, rather, it was another software application called X_TRADER by Trading Technologies. [3] Trading Technologies is a provider that offers high-performance financial trading packages, allowing financial professionals to analyze and trade assets within the stock market more efficiently. Unfortunately, a compromise already existed in the supply chain for this organization. The X_TRADER installer, which had been retired in 2020, still had its code signing certificate set to expire in October 2022. This code signing certificate was exploited by attackers to digitally sign the malicious software. [3] It also inopportunely led to 3CX when an employee unknowingly downloaded a trojanized installer for the X_TRADER software from Trading Technologies prior to the certificate’s expiration. [4]. This compromise of 3CX via X_TRADER was the first case of a cascading supply chain attack reported on within the wider threat landscape. 

Persistence and Privilege Escalation 

Following these findings, researchers were able to identify the likely kill chain that occurred on Windows systems, beginning with the download of the 3CX DesktopApp installer that executed an executable (.exe) file before dropping two trojanized Data Link Libraries (DLLs) alongside a benign executable that was used to sideload malicious DLLs. These DLLs contained and used SIGFLIP and DAVESHELL; both publicly available projects. [3] In this case, the DLLs were used to decrypt using an RC4 key and load a payload into the memory of a compromised system. [3] SIGFLIP and DAVESHELL also extract and decrypt the modular backdoor named VEILEDSIGNAL, which also contains a command and control (C2) configuration. This malware allowed the North Korean threat operators to gain administrative control to the 3CX employee’s device. [3] This was followed by access to the employee’s corporate credentials, ultimately leading to access to 3CX systems. [4] 

Lateral Movement and C2 activity

Security researchers were also able to identify other malware families that were mainly utilized in the supply chain attack to move laterally within the 3CX environment, and allow for C2 communication [3], these malware families are detailed below:

  • TaxHaul: when executed it decrypts shellcode payload, observed by Mandiant to persist via DLL search-order hijacking.
  • Coldcat: complex downloader, which also beacons to a C2 infrastructure.
  • PoolRat: collects system information and executes commands. This is the malware that was found to affect macOS systems.
  • IconicStealer: served as a third stage payload on 3CX systems to steal data or information.

Furthermore, it was also reported early on by Kaspersky that a backdoor named Gopuram, routinely used by the North Korean threat actors Lazarus and typically used against cryptocurrency companies, was also used as a second stage payload on a limited number of 3CX’s customers compromised systems. [5]

3CX detections observed by Darktrace

CrowdStrike and SentinelOne, two of the major detection platforms with which Darktrace partners through security integrations, initially revealed that their platforms had identified the campaign appeared to be targeting 3CXDesktopApp customers in March 2023. 

At this time, Darktrace was also observing this activity and alerting customers to unusual behavior on their networks. [1][7] Darktrace DETECT identified activity related to the supply chain compromise primarily through host-level alerts associated with CrowdStrike and SentinelOne integrations, as well as model breaches related to lateral movement and C2 activity. 

Some of the activity related to the 3CX supply chain compromise that Darktrace detected was observed solely via integration models picking up executable and Microsoft Software Installer (msi) file downloads for the 3CXDesktopApp, suggesting the compromise likely was stopped at the endpoint device. 

CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware
Figure 1: CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware on March 30, 2023.
showcases the Model Breach Event Log for the CrowdStrike integration model breach
Figure 2: The above figure, showcases the Model Breach Event Log for the CrowdStrike integration model breach shown in Figure 1.

In another case highlighted in Figure 3 and 4, security platforms were associating 3CX as malicious. The device in these figures was observed downloading a 3CXDesktopApp executable followed by an msi file about an hour later. This pattern of activity correlates with the compromise process that had been on reported, where the “SmoothOperator” malware that affected 3CX systems was able to persist through DLL side-loading of malicious DLL files delivered with benign executable files, making it difficult for traditional security tools to detect. [2][3][7]

The activity in this case was detected by the DETECT integration model, ‘High Severity Integration Malware Detection’ and was later blocked by the Darktrace RESPOND/Network model, ‘Antigena Significant Anomaly from Client Block’ which applied the “Enforce Pattern of Life” action to intercept the malicious download that was taking place. Darktrace RESPOND uses AI to learn every devices normal pattern of life and act autonomously to enforce its normal activity. In this event, RESPOND would not only intercept the malicious download that was taking place on the device, but also not allow the device to significantly deviate from its normal pattern of activity.

The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file
Figure 3: The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file followed subsequently by the RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.
Another ‘High Severity Integration Malware Detection’ breached
Figure 4: Another ‘High Severity Integration Malware Detection’ breached for the same device in Figure 3 approximately one hour later because of the msi file, 3CXDesktopApp-18.12.416.msi, which also led to the Darktrace RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.

In a separate case, Darktrace also detected a device performing unusual SMB drive writes for the file ‘3CXDesktopApp-18.10.461.msi’. This breached the DETECT model ‘SMB Drive Write’. This model detects when a device starts writing files to another internal device it does not usually communicate with via the SMB protocol using the admin$ or drive shares.

This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network
Figure 5: This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network, this was picked up as new activity for the device on March 28, 2023. 

In a couple of other cases observed by Darktrace, connections detected were made from affected devices to 3CX compromise related endpoints. In Figure 6, the device in question was detected connecting to the endpoint, journalide[.]org. This breached the model, ‘Suspicious Self-Signed SSL’, which looks for connections being made to an endpoint with a self-signed SSL certificate which is designed to look legitimate, as self-signed certificates are often used in malware communication.

Model Breach Event log for connections to the 3CX C2 related endpoint
Figure 6: Model Breach Event log for connections to the 3CX C2 related endpoint, journalide[.]org, these connections breached the model Suspicious Self-Signed SSL on April 24, 2023.

On another Darktrace customer environment, a 3CX C2 endpoint, pbxphonenetwork[.]com, had already been added to the Watched Domains list around the time reports of the 3CX application software being malicious had been reported. The Watched Domains list allows Darktrace to detect if any device on the network makes connections to these domains with more scrutiny and breach a model for further visibility of threats on the network. Activity in this case was detected and subsequently blocked by a Darktrace RESPOND action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”, blocking the device from connecting to this 3CX C2 endpoints on the spot (see Figure 7). This activity subsequently breached the RESPOND model, ‘Antigena Watched Domain Block’. 

Figure 7: History log of the Darktrace RESPOND action applied to the device breaching the Darktrace RESPOND model, Antigena Watched Domain Block and applying the action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443” on March 31, 2023.

Darktrace Coverage 

Utilizing integrations with Darktrace such as those with CrowdStrike and SentinelOne, Darktrace was able to detect and respond to activity identified as malicious 3CX activity by CrowdStrike and SentinelOne as seen in Figures 1, 2, 3, and 4. This activity breached the following Darktrace DETECT models: 

  • Integration / CrowdStrike Alert
  • Security Integration / High Severity Integration Malware Detection

Darktrace was also able to identify lateral movement activity such as in the case illustrated in Figure 5.

  • Compliance / SMB Drive Write

Lastly, C2 beaconing activity from malicious endpoints associated with the 3CX compromise was also detected as seen in Figure 6, this activity breached the following Darktrace DETECT model:

  • Anomalous Connection / Suspicious Self-Signed SSL

For customers with Darktrace RESPOND configured in autonomous response mode, Darktrace RESPOND models also breached to activity related to the 3CX supply chain compromise as seen in Figures 3, 4, and 7. Below are the models that breached and the following autonomous actions that were applied:

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block, “Enforce pattern of life”
  • Antigena / Network / External Threat / Antigena Watched Domain Block, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”

Conclusion 

The first known cascading supply chain compromise occurred inopportunely for 3CX but conveniently for UNC 4736 North Korean threat actors. This “SmoothOperator” compromise was detected by endpoint security platforms such as CrowdStrike who was at the cusp of this discovery when it became one of the first platforms to report on malicious activity related to the 3CX DesktopApp supply chain compromise.  

Although still novel at the time and largely without reported indicators of compromise, Darktrace was able to capture and identify activity related to the 3CX compromise across its customer base, as well as respond autonomously to contain it. Darktrace was able to amplify security integrations with CrowdStrike and SentinelOne, and via anomaly-based model breaches, contribute unique insights by highlighting activity in varied parts of the 3CX supply chain compromise kill chain. The “SmoothOperator” supply chain attack proves that the Darktrace suite of products, including DETECT and RESPOND, can not only act autonomously to identify and respond to novel threats, but also work with security integrations to further amplify intervention and prevent cyber disruption on customer networks. 

Credit to Nahisha Nobregas, SOC Analyst and Trent Kessler, SOC Analyst.

Appendices

MITRE ATT&CK Framework

Resource Development

  • T1588 Obtain Capabilities  
  • T1588.004 Digital Certificates
  • T1608 Stage Capabilities  
  • T1608.003 Install Digital Certificate

Initial Access

  • T1190 Exploit Public-Facing Application
  • T1195 Supply Chain Compromise  
  • T1195.002 Compromise Software Supply Chain

Persistence

  • T1574 Hijack Execution Flow
  • T1574.002 DLL Side-Loading

Privilege Escalation

  • T1055 Process Injection
  • T1574 Hijack Execution Flow  
  • T1574.002 DLL Side-Loading

Command and Control

  • T1071 Application Layer Protocol
  • T1071.001 Web Protocols
  • T1071.004 DNS  
  • T1105 Ingress Tool Transfer
  • T1573 Encrypted Channel

List of IOCs

C2 Hostnames

  • journalide[.]org
  • pbxphonenetwork[.]com

Likely C2 IP address

  • 89.45.67[.]160

References

  1. https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
  2. https://www.bleepingcomputer.com/news/security/3cx-confirms-north-korean-hackers-behind-supply-chain-attack/
  3. https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
  4. https://www.securityweek.com/cascading-supply-chain-attack-3cx-hacked-after-employee-downloaded-trojanized-app/
  5. https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/
  6. https://www.bleepingcomputer.com/news/security/3cx-hack-caused-by-trading-software-supply-chain-attack/
  7. https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

/

August 11, 2025

Minimizing Permissions for Cloud Forensics: A Practical Guide to Tightening Access in the Cloud

Cloud permissions cloud forensicsDefault blog imageDefault blog image

Most cloud environments are over-permissioned and under-prepared for incident response.

Security teams need access to logs, snapshots, and configuration data to understand how an attack unfolded, but giving blanket access opens the door to insider threats, misconfigurations, and lateral movement.

So, how do you enable forensics without compromising your security posture?

The dilemma: balancing access and security

There is a tension between two crucial aspects of cloud security that create a challenge for cloud forensics.

One aspect is the need for Security Operations Center (SOC) and Incident Response (IR) teams to access comprehensive data for investigating and resolving security incidents.

The other conflicting aspect is the principle of least privilege and minimal manual access advocated by cloud security best practices.

This conflict is particularly pronounced in modern cloud environments, where traditional physical access controls no longer apply, and infrastructure-as-code and containerization have transformed the landscape.

There are several common but less-than-ideal approaches to this challenge:

  • Accepting limited data access, potentially leaving incidents unresolved
  • Granting root-level access during major incidents, risking further compromise

Relying on cloud or DevOps teams to retrieve data, causing delays and potential miscommunication

[related-resource]

Challenges in container forensics

Containers present unique challenges for forensic investigations due to their ephemeral and dynamic nature. The orchestration and management of containers, whether on private clusters or using services like AWS Elastic Kubernetes Service (EKS), introduce complexities in capturing and analyzing forensic data.

To effectively investigate containers, it's often necessary to acquire the underlying volume of a node or perform memory captures. However, these actions require specific Identity and Access Management (IAM) and network access to the node, as well as familiarity with the container environment, which may not always be straightforward.

An alternative method of collection in containerized environments is to utilize automated tools to collect this evidence. Since they can detect malicious activity and collect relevant data without needing human input, they can act immediately, securing evidence that might be lost by the time a human analyst is available to collect it manually.

Additionally, automation can help significantly with access and permissions. Instead of analysts needing the correct permissions for the account, service, and node, as well as deep knowledge of the container service itself, for any container from which they wish to collect logs. They can instead collect them, and have them all presented in one place, at the click of a button.

A better approach: practical strategies for cloud forensics

It's crucial to implement strategies that strike a balance between necessary access and stringent security controls.

Here are several key approaches:

1. Dedicated cloud forensics accounts

Establishing a separate cloud account or subscription specifically for forensic activities is foundational. This approach isolates forensic activities from regular operations, preventing potential contamination from compromised environments. Dedicated accounts also enable tighter control over access policies, ensuring that forensic operations do not inadvertently expose sensitive data to unauthorized users.

A separate account allows for:

  • Isolation: The forensic investigation environment is isolated from potentially compromised environments, reducing the risk of cross-contamination.
  • Tighter access controls: Policies and controls can be more strictly enforced in a dedicated account, reducing the likelihood of unauthorized access.
  • Simplified governance: A clear and simplified chain of custody for digital evidence is easier to maintain, ensuring that forensic activities meet legal and regulatory requirements.

For more specifics:

2. Cross-account roles with least privilege

Using cross-account IAM roles, the forensics account can access other accounts, but only with permissions that are strictly necessary for the investigation. This ensures that the principle of least privilege is upheld, reducing the risk of unauthorized access or data exposure during the forensic process.

3. Temporary credentials for just-in-time access

Leveraging temporary credentials, such as AWS STS tokens, allows for just-in-time access during an investigation. These credentials are short-lived and scoped to specific resources, ensuring that access is granted only when absolutely necessary and is automatically revoked after the investigation is completed. This reduces the window of opportunity for potential attackers to exploit elevated permissions.

For AWS, you can use commands such as:

aws sts get-session-token --duration-seconds 43200

aws sts assume-role --role-arn role-to-assume --role-session-name "sts-session-1" --duration-seconds 43200

For Azure, you can use commands such as:

az ad app credential reset --id <appId> --password <sp_password> --end-date 2024-01-01

For more details for Google Cloud environments, see “Create short-lived credentials for a service account” and the request.time parameter.

4. Tag-based access control

Pre-deploying access control based on resource tags is another effective strategy. By tagging resources with identifiers like "Forensics," access can be dynamically granted only to those resources that are relevant to the investigation. This targeted approach minimizes the risk of overexposure and ensures that forensic teams can quickly and efficiently access the data they need.

For example, in AWS:

Condition: StringLike: aws:ResourceTag/Name: ForensicsEnabled

Condition: StringLike: ssm:resourceTag/SSMEnabled: True

For example, in Azure:

"Condition": "StringLike(Resource[Microsoft.Resources/tags.example_key], '*')"

For example, in Google Cloud:

expression: > resource.matchTag('tagKeys/ForensicsEnabled', '*')

Tighten access, enhance security

The shift to cloud environments demands a rethinking of how we approach forensic investigations. By implementing strategies like dedicated cloud forensic accounts, cross-account roles, temporary credentials, and tag-based access control, organizations can strike the right balance between access and security. These practices not only enhance the effectiveness of forensic investigations but also ensure that access is tightly controlled, reducing the risk of exacerbating an incident or compromising the investigation.

Find the right tools for your cloud security

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

In addition to having these forensics capabilities, Darktrace / CLOUD is a real-time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Continue reading
About the author

Blog

/

Network

/

August 11, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI