Blog
/
Network
/
June 19, 2023

Darktrace Detection of 3CX Supply Chain Attack

Explore how the 3CX supply chain compromise was uncovered, revealing key insights into the detection of sophisticated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jun 2023

Ever since the discovery of the SolarWinds hack that affected tens of thousands of organizations around the world in 2020, supply chain compromises have remained at the forefront of the minds of security teams and continue to pose a significant threat to their business operations. 

Supply chain compromises can have far-reaching implications, from disrupting an organization’s daily operations, incurring huge financial and reputational damage, to affecting the critical infrastructure of entire countries. As such, it is essential for organizations to have effective security measures in place able to identify and halt these attacks at the earliest possible stage.

In March 2023 the 3CX Desktop application became the latest victim of a supply chain compromise dubbed as the “SmoothOperator” by SentinelOne. This application is used by over 600,000 companies worldwide and the customer list contains high-profile customers across a variety of industries [2]. The 3CX Desktop application is a Voice over Internet Protocol (VoIP) communication software for enterprises that allows for chats, video calls, and voice calls. [3] The 3CX installers for both Windows and macOS systems were affected by information stealing malware. Researchers were able to discern that threat actors also known as UNC 4736 related to financially motivated North Korean operators also known as AppleJeus were responsible for the supply chain compromise.  Researchers have also linked it to another supply chain compromise that occurred prior on the Trading Technologies X_TRADER platform, making this the first known cascading software supply chain compromise used to distribute malware on a wide scale and still be able to align operator interests. [3] Customer reports following the compromise began to surface about the 3CX software being picked up as malicious by several cybersecurity vendors such as CrowdStrike, SentinelOne, and Palo Alto Networks. [6] 

By leveraging integrations with other security vendors like CrowdStrike and SentinelOne, Darktrace DETECT™ was able to identify activity from the “SmoothOperator” across the customer base at multiple stages of the kill chain in March 2023. Darktrace RESPOND™ was then able to autonomously intervene against these emerging threats, preventing significant disruption to customer networks. 

Background on the first known cascading supply chain attack 

Initial Access

In April 2023, security researchers identified the initial target in this story was not the 3CX desktop application, rather, it was another software application called X_TRADER by Trading Technologies. [3] Trading Technologies is a provider that offers high-performance financial trading packages, allowing financial professionals to analyze and trade assets within the stock market more efficiently. Unfortunately, a compromise already existed in the supply chain for this organization. The X_TRADER installer, which had been retired in 2020, still had its code signing certificate set to expire in October 2022. This code signing certificate was exploited by attackers to digitally sign the malicious software. [3] It also inopportunely led to 3CX when an employee unknowingly downloaded a trojanized installer for the X_TRADER software from Trading Technologies prior to the certificate’s expiration. [4]. This compromise of 3CX via X_TRADER was the first case of a cascading supply chain attack reported on within the wider threat landscape. 

Persistence and Privilege Escalation 

Following these findings, researchers were able to identify the likely kill chain that occurred on Windows systems, beginning with the download of the 3CX DesktopApp installer that executed an executable (.exe) file before dropping two trojanized Data Link Libraries (DLLs) alongside a benign executable that was used to sideload malicious DLLs. These DLLs contained and used SIGFLIP and DAVESHELL; both publicly available projects. [3] In this case, the DLLs were used to decrypt using an RC4 key and load a payload into the memory of a compromised system. [3] SIGFLIP and DAVESHELL also extract and decrypt the modular backdoor named VEILEDSIGNAL, which also contains a command and control (C2) configuration. This malware allowed the North Korean threat operators to gain administrative control to the 3CX employee’s device. [3] This was followed by access to the employee’s corporate credentials, ultimately leading to access to 3CX systems. [4] 

Lateral Movement and C2 activity

Security researchers were also able to identify other malware families that were mainly utilized in the supply chain attack to move laterally within the 3CX environment, and allow for C2 communication [3], these malware families are detailed below:

  • TaxHaul: when executed it decrypts shellcode payload, observed by Mandiant to persist via DLL search-order hijacking.
  • Coldcat: complex downloader, which also beacons to a C2 infrastructure.
  • PoolRat: collects system information and executes commands. This is the malware that was found to affect macOS systems.
  • IconicStealer: served as a third stage payload on 3CX systems to steal data or information.

Furthermore, it was also reported early on by Kaspersky that a backdoor named Gopuram, routinely used by the North Korean threat actors Lazarus and typically used against cryptocurrency companies, was also used as a second stage payload on a limited number of 3CX’s customers compromised systems. [5]

3CX detections observed by Darktrace

CrowdStrike and SentinelOne, two of the major detection platforms with which Darktrace partners through security integrations, initially revealed that their platforms had identified the campaign appeared to be targeting 3CXDesktopApp customers in March 2023. 

At this time, Darktrace was also observing this activity and alerting customers to unusual behavior on their networks. [1][7] Darktrace DETECT identified activity related to the supply chain compromise primarily through host-level alerts associated with CrowdStrike and SentinelOne integrations, as well as model breaches related to lateral movement and C2 activity. 

Some of the activity related to the 3CX supply chain compromise that Darktrace detected was observed solely via integration models picking up executable and Microsoft Software Installer (msi) file downloads for the 3CXDesktopApp, suggesting the compromise likely was stopped at the endpoint device. 

CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware
Figure 1: CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware on March 30, 2023.
showcases the Model Breach Event Log for the CrowdStrike integration model breach
Figure 2: The above figure, showcases the Model Breach Event Log for the CrowdStrike integration model breach shown in Figure 1.

In another case highlighted in Figure 3 and 4, security platforms were associating 3CX as malicious. The device in these figures was observed downloading a 3CXDesktopApp executable followed by an msi file about an hour later. This pattern of activity correlates with the compromise process that had been on reported, where the “SmoothOperator” malware that affected 3CX systems was able to persist through DLL side-loading of malicious DLL files delivered with benign executable files, making it difficult for traditional security tools to detect. [2][3][7]

The activity in this case was detected by the DETECT integration model, ‘High Severity Integration Malware Detection’ and was later blocked by the Darktrace RESPOND/Network model, ‘Antigena Significant Anomaly from Client Block’ which applied the “Enforce Pattern of Life” action to intercept the malicious download that was taking place. Darktrace RESPOND uses AI to learn every devices normal pattern of life and act autonomously to enforce its normal activity. In this event, RESPOND would not only intercept the malicious download that was taking place on the device, but also not allow the device to significantly deviate from its normal pattern of activity.

The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file
Figure 3: The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file followed subsequently by the RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.
Another ‘High Severity Integration Malware Detection’ breached
Figure 4: Another ‘High Severity Integration Malware Detection’ breached for the same device in Figure 3 approximately one hour later because of the msi file, 3CXDesktopApp-18.12.416.msi, which also led to the Darktrace RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.

In a separate case, Darktrace also detected a device performing unusual SMB drive writes for the file ‘3CXDesktopApp-18.10.461.msi’. This breached the DETECT model ‘SMB Drive Write’. This model detects when a device starts writing files to another internal device it does not usually communicate with via the SMB protocol using the admin$ or drive shares.

This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network
Figure 5: This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network, this was picked up as new activity for the device on March 28, 2023. 

In a couple of other cases observed by Darktrace, connections detected were made from affected devices to 3CX compromise related endpoints. In Figure 6, the device in question was detected connecting to the endpoint, journalide[.]org. This breached the model, ‘Suspicious Self-Signed SSL’, which looks for connections being made to an endpoint with a self-signed SSL certificate which is designed to look legitimate, as self-signed certificates are often used in malware communication.

Model Breach Event log for connections to the 3CX C2 related endpoint
Figure 6: Model Breach Event log for connections to the 3CX C2 related endpoint, journalide[.]org, these connections breached the model Suspicious Self-Signed SSL on April 24, 2023.

On another Darktrace customer environment, a 3CX C2 endpoint, pbxphonenetwork[.]com, had already been added to the Watched Domains list around the time reports of the 3CX application software being malicious had been reported. The Watched Domains list allows Darktrace to detect if any device on the network makes connections to these domains with more scrutiny and breach a model for further visibility of threats on the network. Activity in this case was detected and subsequently blocked by a Darktrace RESPOND action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”, blocking the device from connecting to this 3CX C2 endpoints on the spot (see Figure 7). This activity subsequently breached the RESPOND model, ‘Antigena Watched Domain Block’. 

Figure 7: History log of the Darktrace RESPOND action applied to the device breaching the Darktrace RESPOND model, Antigena Watched Domain Block and applying the action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443” on March 31, 2023.

Darktrace Coverage 

Utilizing integrations with Darktrace such as those with CrowdStrike and SentinelOne, Darktrace was able to detect and respond to activity identified as malicious 3CX activity by CrowdStrike and SentinelOne as seen in Figures 1, 2, 3, and 4. This activity breached the following Darktrace DETECT models: 

  • Integration / CrowdStrike Alert
  • Security Integration / High Severity Integration Malware Detection

Darktrace was also able to identify lateral movement activity such as in the case illustrated in Figure 5.

  • Compliance / SMB Drive Write

Lastly, C2 beaconing activity from malicious endpoints associated with the 3CX compromise was also detected as seen in Figure 6, this activity breached the following Darktrace DETECT model:

  • Anomalous Connection / Suspicious Self-Signed SSL

For customers with Darktrace RESPOND configured in autonomous response mode, Darktrace RESPOND models also breached to activity related to the 3CX supply chain compromise as seen in Figures 3, 4, and 7. Below are the models that breached and the following autonomous actions that were applied:

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block, “Enforce pattern of life”
  • Antigena / Network / External Threat / Antigena Watched Domain Block, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”

Conclusion 

The first known cascading supply chain compromise occurred inopportunely for 3CX but conveniently for UNC 4736 North Korean threat actors. This “SmoothOperator” compromise was detected by endpoint security platforms such as CrowdStrike who was at the cusp of this discovery when it became one of the first platforms to report on malicious activity related to the 3CX DesktopApp supply chain compromise.  

Although still novel at the time and largely without reported indicators of compromise, Darktrace was able to capture and identify activity related to the 3CX compromise across its customer base, as well as respond autonomously to contain it. Darktrace was able to amplify security integrations with CrowdStrike and SentinelOne, and via anomaly-based model breaches, contribute unique insights by highlighting activity in varied parts of the 3CX supply chain compromise kill chain. The “SmoothOperator” supply chain attack proves that the Darktrace suite of products, including DETECT and RESPOND, can not only act autonomously to identify and respond to novel threats, but also work with security integrations to further amplify intervention and prevent cyber disruption on customer networks. 

Credit to Nahisha Nobregas, SOC Analyst and Trent Kessler, SOC Analyst.

Appendices

MITRE ATT&CK Framework

Resource Development

  • T1588 Obtain Capabilities  
  • T1588.004 Digital Certificates
  • T1608 Stage Capabilities  
  • T1608.003 Install Digital Certificate

Initial Access

  • T1190 Exploit Public-Facing Application
  • T1195 Supply Chain Compromise  
  • T1195.002 Compromise Software Supply Chain

Persistence

  • T1574 Hijack Execution Flow
  • T1574.002 DLL Side-Loading

Privilege Escalation

  • T1055 Process Injection
  • T1574 Hijack Execution Flow  
  • T1574.002 DLL Side-Loading

Command and Control

  • T1071 Application Layer Protocol
  • T1071.001 Web Protocols
  • T1071.004 DNS  
  • T1105 Ingress Tool Transfer
  • T1573 Encrypted Channel

List of IOCs

C2 Hostnames

  • journalide[.]org
  • pbxphonenetwork[.]com

Likely C2 IP address

  • 89.45.67[.]160

References

  1. https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
  2. https://www.bleepingcomputer.com/news/security/3cx-confirms-north-korean-hackers-behind-supply-chain-attack/
  3. https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
  4. https://www.securityweek.com/cascading-supply-chain-attack-3cx-hacked-after-employee-downloaded-trojanized-app/
  5. https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/
  6. https://www.bleepingcomputer.com/news/security/3cx-hack-caused-by-trading-software-supply-chain-attack/
  7. https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI