Blog
/
/
August 29, 2023

Analyzing Post-Exploitation on Papercut Servers

Dive into our analysis covering post-exploitation activity on PaperCut servers. Learn the details and impact of this attack and how to keep yourself safe!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Aug 2023

Introduction

Malicious cyber actors are known to exploit vulnerabilities in Internet-facing systems and services to gain entry to organizations’ digital environments. Keeping track of the vulnerabilities which malicious actors are exploiting is seemingly futile, with malicious actors continually finding new avenues of exploitation.  

In mid-April 2023, Darktrace, along with the wider security community, observed malicious cyber actors gaining entry to networks through exploitation of a critical vulnerability in the print management system, PaperCut. Darktrace observed two types of attack chain within its customer base, one involving the deployment of payloads to facilitate crypto-mining, and the other involving the deployment of a payload to facilitate Tor-based command-and-control (C2) communication.

Walking Through the Front Door

One of the most widely abused Initial Access methods attackers use to gain entry to an organization’s digital environment is the exploitation of vulnerabilities in Internet-facing systems and services [1]. The public disclosure of a critical vulnerability in a widely used, Internet-facing service, along with a proof of concept (POC) exploit for such vulnerability, provides malicious cyber actors with a key to the front door of countless organizations. Once malicious actors are in possession of such a key, security teams are in a race against time to patch all their vulnerable systems and services. But until organizations accomplish this, the doors are left open.

This year, the security community has seen malicious actors gaining entry to networks through the exploitation of vulnerabilities in a range of services. These services include familiar suspects, such as Microsoft Exchange and ManageEngine, along with less familiar suspects, such as PaperCut. PaperCut is a system for managing and tracking printing, copying, and scanning activity within organizations. In 2021, PaperCut was used in more than 50,000 sites across over 100 countries [2], making PaperCut a widely used print management system.

In January 2023, Trend Micro’s Zero Day Initiative (ZDI) notified PaperCut of a critical RCE vulnerability, namely CVE-2023–27350, in certain versions of PaperCut NG (PaperCut’s ‘print only’ variant) and PaperCut MF (PaperCut’s ‘extended feature’ variant) [3,4]. In March 2023, PaperCut released versions of PaperCut NG and PaperCut MF containing a fix for CVE-2023–27350 [4]. Despite this, security teams observed a surge in cases of malicious actors exploiting CVE-2023–27350 to compromise PaperCut servers in April 2023 [4-10]. This trend was mirrored in Darktrace’s customer base, where a surge in compromises of PaperCut servers was observed in April 2023.

Observed Attack Chains

In mid-April 2023, Darktrace identified two related clusters of attack chains. The attack chains within the first of these clusters involved Internet-facing PaperCut servers downloading payloads with crypto-mining capabilities from the external location, 50.19.48[.]59. While the attack chains within the second of the clusters involved Internet-facing PaperCut servers downloading payloads with Tor-based C2 capabilities from 192.184.35[.]216. The attack chains within the first cluster, which were observed on April 22, 2023, will be referred to as ‘50.19.48[.]59 chains’ and the attack chains in the second cluster, observed on April 24, 2023, will be called ‘192.184.35[.]216 chains’.

Both attack chains started with highly unusual external endpoints contacting the '/SetupCompleted' endpoint of an Internet-facing PaperCut server. These requests to the ‘/SetupCompleted’ endpoint likely represented attempts to exploit CVE-2023–27350 [10].  50.19.48[.]59 chains started with exploit connections from the external endpoint, 85.106.112[.]60, whereas 192.184.35[.]216 chains started with exploit connections from Tor nodes, such as 185.34.33[.]2.

Figure 1: Darktrace’s Advanced Search data showing likely CVE-2023-27350 exploitation activity from the suspicious, external endpoint, 85.106.112[.]60.

After the exploitation step, the two attack chains took different paths. In the 50.19.48[.]59 chains, the exploitation step was followed by the affected PaperCut server making HTTP GET requests over port 82 to the rare external endpoint, 50.19.48[.]59. In the 192.184.35[.]216 chains, the exploitation step was followed by the affected PaperCut server making an HTTP GET request over port 443 to 192.184.35[.]216.

The HTTP GET requests to 50.19.48[.]59 had Target URIs such as ‘/me1.bat’, ‘/me2.bat’, ‘/dom.zip’, ‘/mazar.bat’, and ‘/mazar.zip’, whilst the HTTP GET requests to 192.184.35[.]216 had the Target URI ‘/4591187629.exe’. The User-Agent header of the GET requests to 192.184.35[.]216 indicated that that the malicious file transfers were initiated through Microsoft’s pre-installed Background Intelligent Transfer Service (BITS).

Figure 2: Darktrace’s Advanced Search data showing a PaperCut server downloading Batch and ZIP files from 50.19.48[.]59 straight after receiving likely exploit connections from 85.106.112[.]60.
Figure 3: Darktrace’s Event Log data showing a PaperCut server downloading an executable file from 192.184.35[.]216 immediately after receiving a likely exploit connection from the Tor node, 185.34.33[.]2.

Downloads from 50.19.48[.]59 were followed by cURL GET requests to 138.68.61[.]82 and then connections to external endpoints associated with the cryptocurrency miner, Mimu (as seen in Fig 4). Downloads from 192.184.35[.]216 were followed by Python-urllib GET requests to api.ipify[.]org and long connections to Tor nodes (as seen in Fig 5).  

These facts suggest that the actor behind the 50.19.48[.]59 chains were seeking to drop cryptocurrency miners on PaperCut servers, with the intention of abusing the customer’s network to carry out resource intensive and costly cryptocurrency mining activity. Meanwhile, the actors behind the 192.184.35[.]216 chains were likely attempting to establish a Tor-based C2 channel with PaperCut servers to allow actors to further communicate with compromised devices.

Figure 4: Darktrace's Event Log data showing a PaperCut contacting 50.19.48[.]59 to download payloads, and then making a cURL request to 138.68.61[.]82 before contacting a Mimu crypto-mining endpoint.
Figure 5: Darktrace’s Event Log data showing a PaperCut server contacting 192.184.35[.]216 to download a payload, and then making connections to api.ipify[.]org and several Tor nodes.

The activities ensuing from both attack chains were varied, making it difficult to ascertain whether the activities were steps of separate attack chains, or steps of the existing 50.19.48[.]59 and 192.184.35[.]216 chains. A wide variety of activities ensued from observed 50.19.48[.]59 and 192.184.35[.]216 chains, including the abuse of pre-installed tools, such as cURL, CertUtil, and PowerShell to transfer further payloads to PaperCut servers, Cobalt Strike C2 communication, Ngrok usage, Mimikatz usage, AnyDesk usage, and in one case, detonation of the LockBit ransomware strain.

Figure 6: Diagram representing the steps of observed 50.19.48[.]59 chains.
Figure 7: Diagram representing the steps of observed 192.184.35[.]215 chains.

As the PaperCut servers that were targeted by malicious actors are Internet-facing, they regularly receive connections from unusual external endpoints. The exploit connections in the 50.19.48[.]59 and 192.184.35[.]216 chains, which originated from unusual external endpoints, were therefore not detected by Darktrace DETECT™, which relies on anomaly-based methods to detect network-based steps of an intrusion.

On the other hand, the post-exploitation steps of the 50.19.48[.]59 and 192.184.35[.]216 chains yielded ample anomaly-based detections, given that they consisted of PaperCut servers displaying highly unusual behaviors. As such Darktrace DETECT was able to successfully identify multiple chains of suspicious activity, including unusual file downloads from external endpoints and beaconing activity to rare external locations.

The file downloads from 50.19.48[.]59 observed in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Anomalous File / Internet Facing System File Download

- Anomalous File / Script from Rare External Location

- Anomalous File / Zip or Gzip from Rare External Location

- Device / Internet Facing Device with High Priority Alert

Figure 8: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 50.19.48[.]59.

The file downloads from 192.184.35[.]216 observed in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous File / EXE from Rare External Location

- Anomalous File / Numeric File Download

- Device / Internet Facing Device with High Priority Alert

Figure 9: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 192.184.35[.]216.

Subsequent C2, beaconing, and crypto-mining connections in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Server Activity / New User Agent from Internet Facing System

- Anomalous Server Activity / Rare External from Server

- Compromise / Crypto Currency Mining Activity

- Compromise / High Priority Crypto Currency Mining

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Failed Connections

- Compromise / SSL Beaconing to Rare Destination

- Device / Initial Breach Chain Compromise

- Device / Large Number of Model Breaches

Figure 10: Darktrace’s Event Log data showing a PaperCut server breaching models as a result of its connections to a Mimu crypto-mining endpoint.

Subsequent C2, beaconing, and Tor connections in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Compromise / Anomalous File then Tor

- Compromise / Beaconing Activity To External Rare

- Compromise / Possible Tor Usage

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Uncommon Tor Usage

- Device / Initial Breach Chain Compromise

Figure 11: Darktrace’s Event Log data showing a PaperCut server breaching several models as a result of its connections to Tor nodes.

Darktrace RESPOND

Darktrace RESPOND™ was not active in any of the networks affected by 192.184.35[.]216 activity, however, RESPOND was active in some of the networks affected by 50.19.48[.]59 activity.  In those environments where RESPOND was enabled in autonomous mode, observed malicious activities resulted in intervention from RESPOND, including autonomous actions like blocking connections to specific external endpoints, blocking all outgoing traffic, and restricting affected devices to a pre-established pattern of behavior.

Figure 12: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connection to 50.19.48[.]59.
Figure 13: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connections to a Mimu crypto-mining endpoint.

Darktrace Cyber AI Analyst

Cyber AI Analyst autonomously investigated model breaches caused by events within these 50.19.48[.]59 and 192.184.35[.]216 chains. Cyber AI Analyst created user-friendly and detailed descriptions of these events, and then linked together these descriptions into threads representing the attack chains. Darktrace DETECT thus uncovered the individual steps of the attack chains, while Cyber AI Analyst was able to piece together the individual steps and uncover the attack chains themselves.  

Figure 14: An AI Analyst Incident entry showing the first event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 15: An AI Analyst Incident entry showing the second event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 16: An AI Analyst Incident entry showing the third event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 17: An AI Analyst Incident entry showing the first event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.
Figure 18: An AI Analyst Incident entry showing the second event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.

Conclusion

The existence of critical vulnerabilities in third-party software leaves organizations at constant risk of malicious actors breaching the perimeters of their networks. This risk can be mitigated through attack surface management and regular patching. However, this does not eliminate cyber risk entirely, meaning that organizations must be prepared for the eventuality of malicious actors getting inside their digital estate.

In April 2023, Darktrace observed malicious actors breaching the perimeters of several customer networks through exploitation of a critical vulnerability in PaperCut. Darktrace DETECT observed actors exploiting PaperCut servers to conduct a wide variety of post-exploitation activities, including downloading malicious payloads associated with cryptocurrency mining or payloads with Tor-based C2 capabilities. Darktrace DETECT created numerous model breaches based on this activity which alerted then customer’s security teams early in their development, providing them with ample time to take mitigative steps.

The successful detection of this payload delivery activity, along with the crypto-mining, beaconing, and Tor C2 activities which followed, elicited Darktrace RESPOND to take autonomous inhibitive action against the ongoing activity in those environments where it was operating in autonomous response mode.

If left to unfold, these intrusions developed in a variety of ways, in some cases leading to Cobalt Strike and ransomware activity. The detection of these intrusions in their early stages thus played a vital role in preventing malicious cyber actors from causing significant disruption.

Credit to: Sam Lister, Senior SOC Analyst, Zoe Tilsiter, Senior Cyber Analyst.

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

- Exploit Public-Facing Application (T1190)

Execution techniques:

- Command and Scripting Interpreter: PowerShell (T1059.001)

Discovery techniques:

- System Network Configuration Discovery (T1016)

Command and Control techniques

- Application Layer Protocol: Web Protocols (T1071.001)

- Encrypted Channel: Asymmetric Cryptography (T1573.002)

- Ingress Tool Transfer (T1105)

- Non-Standard Port (T1571)

- Protocol Tunneling (T1572)

- Proxy: Multi-hop Proxy (T1090.003)

- Remote Access Software (T1219)

Defense Evasion techniques:

- BITS Jobs (T1197)

Impact techniques:

- Data Encrypted for Impact (T1486)

List of Indicators of Compromise (IoCs)

IoCs from 50.19.48[.]59 attack chains:

- 85.106.112[.]60

- http://50.19.48[.]59:82/me1.bat

- http://50.19.48[.]59:82/me2.bat

- http://50.19.48[.]59:82/dom.zip

- 138.68.61[.]82

- update.mimu-me[.]cyou • 102.130.112[.]157

- 34.195.77[.]216

- http://50.19.48[.]59:82/mazar.bat

- http://50.19.48[.]59:82/mazar.zip

- http://50.19.48[.]59:82/prx.bat

- http://50.19.48[.]59:82/lol.exe  

- http://77.91.85[.]117/122.exe

- windows.n1tro[.]cyou • 176.28.51[.]151

- 77.91.85[.]117

- 91.149.237[.]76

- kernel-mlclosoft[.]site • 104.21.29[.]206

- tunnel.us.ngrok[.]com • 3.134.73[.]173

- 212.113.116[.]105

- c34a54599a1fbaf1786aa6d633545a60 (JA3 client fingerprint of crypto-mining client)

IoCs from 192.184.35[.]216 attack chains:

- 185.56.83[.]83

- 185.34.33[.]2

- http://192.184.35[.]216:443/4591187629.exe

- api.ipify[.]org • 104.237.62[.]211

- www.67m4ipctvrus4cv4qp[.]com • 192.99.43[.]171

- www.ynbznxjq2sckwq3i[.]com • 51.89.106[.]29

- www.kuo2izmlm2silhc[.]com • 51.89.106[.]29

- 148.251.136[.]16

- 51.158.231[.]208

- 51.75.153[.]22

- 82.66.61[.]19

- backmainstream-ltd[.]com • 77.91.72[.]149

- 159.65.42[.]223

- 185.254.37[.]236

- http://137.184.56[.]77:443/for.ps1

- http://137.184.56[.]77:443/c.bat

- 45.88.66[.]59

- http://5.8.18[.]237/download/Load64.exe

- http://5.8.18[.]237/download/sdb64.dll

- 140e0f0cad708278ade0984528fe8493 (JA3 client fingerprint of Tor-based client)

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-137a

[2] https://www.papercut.com/kb/Main/PaperCutMFSolutionBrief/

[3] https://www.zerodayinitiative.com/advisories/ZDI-23-233/

[4] https://www.papercut.com/kb/Main/PO-1216-and-PO-1219

[5] https://www.trendmicro.com/en_us/research/23/d/update-now-papercut-vulnerability-cve-2023-27350-under-active-ex.html

[6] https://www.huntress.com/blog/critical-vulnerabilities-in-papercut-print-management-software

[7] https://news.sophos.com/en-us/2023/04/27/increased-exploitation-of-papercut-drawing-blood-around-the-internet/

[8] https://twitter.com/MsftSecIntel/status/1651346653901725696

[9] https://twitter.com/MsftSecIntel/status/1654610012457648129

[10] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-131a

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

December 5, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI