Blog
/
/
May 12, 2021

How AI Protects Critical Infrastructure From Ransomware

Explore the role of AI in safeguarding critical infrastructure from ransomware, as revealed by Darktrace's latest insights.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
May 2021

Modern Threats to OT Environments

At the 2021 RSA cyber security conference, US Secretary of Homeland Security Alejandro Mayorkas made an era-defining statement regarding the cyber security landscape: “Let me be clear: ransomware now poses a national security threat.”

Last weekend, Mayorkas’ words rang true. A ransomware attack on the Colonial Pipeline – responsible for nearly half of the US East Coast’s diesel, gasoline, and jet fuel – resulted in the shutdown of a critical fuel network supplying a number of Eastern states.

The fallout from the attack demonstrated how widespread and damaging the consequences of ransomware can be. Against critical infrastructure and utilities, cyber-attacks have the potential to disrupt supplies, harm the environment, and even threaten human lives.

Though full details remain to be confirmed, the attack is reported to have been conducted by an affiliate of the cyber-criminal group called DarkSide, and likely leveraged common remote desktop tools. Remote access has been enabled as an exploitable vulnerability within critical infrastructure by the shift to remote work that many organizations made last year, including those with Industrial Control Systems (ICS) and Operational Technology (OT).

The rise of industrial ransomware

Ransomware against industrial environments is on the rise, with a reported 500% increase since 2018. Oftentimes, these threats leverage the convergence of IT and OT systems, first targeting IT before pivoting to OT. This was seen with the EKANS ransomware that included ICS processes in its ‘kill list’, as well as the Cring ransomware that compromised ICS after first exploiting a vulnerability in a virtual private network (VPN).

It remains to be seen whether the initial attack vector in the Colonial Pipeline compromise exploited a technical vulnerability, compromised credentials, or a targeted spear phishing campaign. It has been reported that the attack first impacted IT systems, and that Colonial then shut down OT operations as a safety precaution. Colonial confirms that the ransomware “temporarily halted all pipeline operations and affected some of our IT systems,” showing that, ultimately, both OT and IT were affected. This is a great example of how many OT systems depend on IT, such that an IT cyber-attack has the ability to take down OT and ICS processes.

In addition to locking down systems, the threat actors also stole 100GB of sensitive data from Colonial. This kind of double extortion attack — in which data is exfiltrated before files are encrypted — has unfortunately become the norm rather than the exception, with over 70% of ransomware attacks involving exfiltration. Some ransomware gangs have even announced that they are dropping encryption altogether in favor of data theft and extortion methods.

Earlier this year, Darktrace defended against a double extortion ransomware attack waged against a critical infrastructure organization, which also leveraged common remote access tools. This blog will outline the threat find in depth, showing how Darktrace’s self-learning AI responded autonomously to an attack strikingly similar to the Colonial Pipeline incident.

Darktrace threat find

Ransomware against electric utilities equipment supplier

In an attack against a North American equipment supplier for electrical utilities earlier this year, Darktrace/OT demonstrated its ability to protect critical infrastructure against double extortion ransomware that targeted organizations with ICS and OT.

The ransomware attack initially targeted IT systems, and, thanks to self-learning Cyber AI, was stopped before it could spill over into OT and disrupt operations.

The attacker first compromised an internal server in order to exfiltrate data and deploy ransomware over the course of 12 hours. The short amount of time between initial compromise and deployment is unusual, as ransomware threat actors often wait several days to spread stealthily as far across the cyber ecosystem as possible before striking.

Figure 1: A timeline of the attack

How did the attack bypass the rest of the security stack?

The attacker leveraged ‘Living off the Land’ techniques to blend into the business’ normal ‘patterns of life’, using a compromised admin credential and a remote management tool approved by the organization, in its attempts to remain undetected.

Darktrace commonly sees the abuse of legitimate remote management software in attackers’ arsenal of techniques, tactics, and procedures (TTPs). Remote access is also becoming an increasingly common vector of attack in ICS attacks in particular. For example, in the cyber-incident at the Florida water treatment facility last February, attackers exploited a remote management tool in attempts to manipulate the treatment process.

The specific strain of ransomware deployed by this attacker also successfully evaded detection by anti-virus by using a unique file extension when encrypting files. These forms of ‘signatureless’ ransomware easily slip past legacy approaches to security that rely on rules, signatures, threat feeds, and lists of documented Common Vulnerabilities and Exposures (CVEs), as these are methods that can only detect previously documented threats.

The only way to detect never-before-seen threats like signatureless ransomware is for a technology to find anomalous behavior, rather than rely on lists of ‘known bads’. This can be achieved with self-learning technology, which spots even the most subtle deviations from the normal ‘patterns of life’ for all devices, users, and all the connections between them.

Darktrace insights

Initial compromise and establishing foothold

Despite the abuse of a legitimate tool and the absence of known signatures, Darktrace/OT was able to use a holistic understanding of normal activity to detect the malicious activity at multiple points in the attack lifecycle.

The first clear sign of an emerging threat that was alerted by Darktrace was the unusual use of a privileged credential. The device also served an unusual remote desktop protocol (RDP) connection from a Veeam server shortly before the incident, indicating that the attacker may have moved laterally from elsewhere in the network.

Three minutes later, the device initiated a remote management session which lasted 21 hours. This allowed the attacker to move throughout the broader cyber ecosystem while remaining undetected by traditional defences. Darktrace, however, was able to detect unusual remote management usage as another early warning indicative of an attack.

Double threat part one: Data exfiltration

One hour after the initial compromise, Darktrace detected unusual volumes of data being sent to a 100% rare cloud storage solution, pCloud. The outbound data was encrypted using SSL, but Darktrace created multiple alerts relating to large internal downloads and external uploads that were a significant deviation from the device’s normal ‘pattern of life’.

The device continued to exfiltrate data for nine hours. Analysis of the files downloaded by the device, which were transferred using the unencrypted SMB protocol, suggests that they were sensitive in nature. Fortunately, Darktrace was able to pinpoint the specific files that were exfiltrated so that the customer could immediately evaluate the potential implications of the compromise.

Double threat part two: File encryption

A short time later, at 01:49 local time, the compromised device began encrypting files in a SharePoint back-up share drive. Over the next three and a half hours, the device encrypted over 13,000 files on at least 20 SMB shares. In total, Darktrace produced 23 alerts for the device in question, which amounted to 48% of all the alerts produced in the corresponding 24-hour period.

Darktrace’s Cyber AI Analyst then automatically launched an investigation, identifying the internal data transfers and the file encryption over SMB. From this, it was able to present incident reports that connected the dots among these disparate anomalies, piecing them together into a coherent security narrative. This put the security team in a position to immediately take remediating action.

If the customer had been using Darktrace’s autonomous response technology, there is no doubt the activity would have been halted before significant volumes of data could have been exfiltrated or files encrypted. Fortunately, after seeing both the alerts and Cyber AI Analyst reports, the customer was able to use Darktrace’s ‘Ask the Expert’ (ATE) service for incident response to mitigate the impact of the attack and assist with disaster recovery.

Figure 2: AI Analyst Incident reporting an unusual reprogram command using the MODBUS protocol. The incident includes a plain English summary, relevant technical information, and the investigation process used by the AI.  

Detecting the threat before it could disrupt critical infrastructure

The targeted supplier was overseeing OT and had close ties to critical infrastructure. By facilitating the early-stage response, Darktrace prevented the ransomware from spreading further onto the factory floor. Crucially, Darktrace also minimized operational disruption, helping to avoid the domino effect which the attack could have had, affecting not only the supplier itself, but also the electric utilities that this supplier supports.

As both the recent Colonial Pipeline incident and the above threat find reveal, ransomware is a pressing concern for organizations overseeing industrial operations across all forms of critical infrastructure, from pipelines to the power grid and its suppliers. With self-learning AI, these attack vectors can be dealt with before the damage is done through real-time threat detection, autonomous investigations, and — if activated — targeted machine-speed response.

Looking forward: Using Self-Learning AI to protect critical infrastructure across the board

In late April, the Biden administration announced an ambitious effort to “safeguard US critical infrastructure from persistent and sophisticated threats.” The Department of Energy’s (DOE) 100-day plan specifically seeks technologies “that will provide cyber visibility, detection, and response capabilities for industrial control systems of electric utilities.”

The Biden administration’s cyber sprint clearly calls for a technology that protects critical energy infrastructure, rather than merely best practice measures and regulations. As seen in the above threat find, Darktrace AI is a powerful technology that leverages unsupervised machine learning to autonomously safeguard critical infrastructure and its suppliers with machine speed and precision.

Darktrace enhances detection, mitigation, and forensic capabilities to detect  sophisticated and novel attacks, along with insider threats and pre-existing infections, using Self-Learning Cyber AI, without rules, signatures, or lists of CVEs. Incident investigations provided in real time by Cyber AI Analyst jumpstart remediation with actionable insights, containing emerging attacks at their early stages, before they escalate into crisis.

Enable near real-time situational awareness and response capabilities

Darktrace immediately understands, identifies, and investigates all anomalous activity in ICS/OT networks, whether human or machine driven. Additionally, Darktrace actions targeted response where appropriate to neutralize threats, either actively or in human confirmation mode. Because Self-learning AI adapts alongside evolutions in the ecosystem, organizations benefit from real-time awareness with no tuning or human input necessary

Deploy technologies to increase visibility of threats in ICS and OT systems

Darktrace contextualizes security events, adapts to novel techniques, and translates findings into a security narrative that can be actioned by humans in minutes. Delivering a unified view across IT and OT systems.

Darktrace detects, investigates, and responds to threats at higher Purdue levels and in IT systems before they ‘spill over’ into OT. ‘Plug and play’ deployment seamlessly integrates with technological architecture, presenting 3D network topology with granular visibility into all users, devices, and subnets.

Darktrace's asset identification continuously catalogues all ICS/OT devices and identifies and investigates all threatening activity indicative of emerging attacks – be it ICS ransomware, APTs, zero-day exploits, insider threats, pre-existing infections, DDoS, crypto-mining, misconfigurations, or never-before-seen attacks.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Darktrace model detections:

  • Initial compromise:
  • User / New Admin Credential on Client
  • Data exfiltration:
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed by Multiple Model Breaches
  • Anomalous Connection / Download and Upload
  • File encryption:
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Anomalous RDP Followed by Multiple Model Breaches
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Multiple Lateral Movement Model Breaches

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Network

/

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving tactics

man on computer doing work scattered spider cybersecurityDefault blog imageDefault blog image

What is Scattered Spider?

Scattered Spider is a native English-speaking group, also referred to, or closely associated with, aliases such as UNC3944, Octo Tempest and Storm-0875. They are primarily financially motivated with a clear emphasis on leveraging social engineering, SIM swapping attacks, exploiting legitimate tooling as well as using Living-Off-the-Land (LOTL) techniques [1][2].

In recent years, Scattered Spider has been observed employing a shift in tactics, leveraging Ransomware-as-a-Service (RaaS) platforms in their attacks. This adoption reflects a shift toward more scalable attacks with a lower barrier to entry, allowing the group to carry out sophisticated ransomware attacks without the need to develop it themselves.

While RaaS offerings have been available for purchase on the Dark Web for several years, they have continued to grow in popularity, providing threat actors a way to cause significant impact to critical infrastructure and organizations without requiring highly technical capabilities [12].

This blog focuses on the group’s recent changes in tactics, techniques, and procedures (TTPs) reported by open-source intelligence (OSINT) and how TTPs in a recent Scattered Spider attack observed by Darktrace compare.

How has Scattered Spider been reported to operate?

First observed in 2022, Scattered Spider is known to target various industries globally including telecommunications, technology, financial services, and commercial facilities.

Overview of key TTPs

Scattered Spider has been known to utilize the following methods which cover multiple stages of the Cyber Kill Chain including initial access, lateral movement, evasion, persistence, and action on objective:

Social engineering [1]:

Impersonating staff via phone calls, SMS and Telegram messages; obtaining employee credentials (MITRE techniques T1598,T1656), multi-factor authentication (MFA) codes such as one-time passwords, or convincing employees to run commercial remote access tools enabling initial access (MITRE techniques T1204,T1219,T1566)

  • Phishing using specially crafted domains containing the victim name e.g. victimname-sso[.]com
  • MFA fatigue: sending repeated requests for MFA approval with the intention that the victim will eventually accept (MITRE technique T1621)

SIM swapping [1][3]:

  • Includes hijacking phone numbers to intercept 2FA codes
  • This involves the actor migrating the victim's mobile number to a new SIM card without legitimate authorization

Reconnaissance, lateral movement & command-and-control (C2) communication via use of legitimate tools:

  • Examples include Mimikatz, Ngrok, TeamViewer, and Pulseway [1]. A more recently reported example is Teleport [3].

Financial theft through their access to victim networks: Extortion via ransomware, data theft (MITRE technique T1657) [1]

Bring Your Own Vulnerable Driver (BYOVD) techniques [4]:

  • Exploiting vulnerable drivers to evade detection from Endpoint Detection and Response (EDR) security products (MITRE technique T1068) frequently used against Windows devices.

LOTL techniques

LOTL techniques are also closely associated with Scattered Spider actors once they have gained initial access; historically this has allowed them to evade detection until impact starts to be felt. It also means that specific TTPs may vary from case-to-case, making it harder for security teams to prepare and harden defences against the group.

Prominent Scattered Spider attacks over the years

While attribution is sometimes unconfirmed, Scattered Spider have been linked with a number of highly publicized attacks since 2022.

Smishing attacks on Twilio: In August 2022 the group conducted multiple social engineering-based attacks. One example was an SMS phishing (smishing) attack against the cloud communication platform Twilio, which led to the compromise of employee accounts, allowing actors to access internal systems and ultimately target Twilio customers [5][6].

Phishing and social engineering against MailChimp: Another case involved a phishing and social engineering attack against MailChimp. After gaining access to internal systems through compromised employee accounts the group conducted further attacks specifically targeting MailChimp users within cryptocurrency and finance industries [5][7].

Social engineering against Riot Games: In January 2023, the group was linked with an attack on video game developer Riot Games where social engineering was once again used to access internal systems. This time, the attackers exfiltrated game source code before sending a ransom note [8][9].

Attack on Caesars & MGM: In September 2023, Scattered Spider was linked with attacked on Caesars Entertainment and MGM Resorts International, two of the largest casino and gambling companies in the United States. It was reported that the group gathered nearly six terabytes of stolen data from the hotels and casinos, including sensitive information of guests, and made use of the RaaS strain BlackCat [10].

Ransomware against Marks & Spencer: More recently, in April 2025, the group has also been linked to the alleged ransomware incident against the UK-based retailer Marks & Spencer (M&S) making use of the DragonForce RaaS [11].

How a recent attack observed by Darktrace compares

In May 2025, Darktrace observed a Scattered Spider attack affecting one of its customers. While initial access in this attack fell outside of Darktrace’s visibility, information from the affected customer suggests similar social engineering techniques involving abuse of the customer’s helpdesk and voice phishing (vishing) were used for reconnaissance.

Initial access

It is believed the threat actor took advantage of the customer’s third-party Software-as-a-Service (SaaS) applications, such as Salesforce during the attack.

Such applications are a prime target for data exfiltration due to the sensitive data they hold; customer, personnel, and business data can all prove useful in enabling further access into target networks.

Techniques used by Scattered Spider following initial access to a victim network tend to vary more widely and so details are sparser within OSINT. However, Darktrace is able to provide some additional insight into what techniques were used in this specific case, based on observed activity and subsequent investigation by its Threat Research team.

Lateral movement

Following initial access to the customer’s network, the threat actor was able to pivot into the customer’s Virtual Desktop Infrastructure (VDI) environment.

Darktrace observed the threat actor spinning up new virtual machines and activating cloud inventory management tools to enable discovery of targets for lateral movement.

In some cases, these virtual machines were not monitored or managed by the customer’s security tools, allowing the threat actor to make use of additional tooling such as AnyDesk which may otherwise have been blocked.

Tooling in further stages of the attack sometimes overlapped with previous OSINT reporting on Scattered Spider, with anomalous use of Ngrok and Teleport observed by Darktrace, likely representing C2 communication. Additional tooling was also seen being used on the virtual machines, such as Pastebin.

 Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.
Figure 1: Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.

Leveraging LOTL techniques

Alongside use of third-party tools that may have been unexpected on the network, various LOTL techniques were observed during the incident; this primarily involved the abuse of standard network protocols such as:

  • SAMR requests to alter Active Directory account details
  • Lateral movement over RDP and SSH
  • Data collection over LDAP and SSH

Coordinated exfiltration activity linked through AI-driven analysis

Multiple methods of exfiltration were observed following internal data collection. This included SSH transfers to IPs associated with Vultr, alongside significant uploads to an Amazon S3 bucket.

While connections to this endpoint were not deemed unusual for the network at this stage due to the volume of traffic seen, Darktrace’s Cyber AI Analyst was still able to identify the suspiciousness of this behavior and launched an investigation into the activity.

Cyber AI Analyst successfully correlated seemingly unrelated internal download and external upload activity across multiple devices into a single, broader incident for the customer’s security team to review.

Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 2: Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 3: Cyber AI Analyst’s detection of internal data downloads and subsequent external uploads to an Amazon S3 bucket.

Exfiltration and response

Unfortunately, as Darktrace was not configured in Autonomous Response mode at the time, the attack was able to proceed without interruption, ultimately escalating to the point of data exfiltration.

Despite this, Darktrace was still able to recommend several Autonomous Response actions, aimed at containing the attack by blocking the internal data-gathering activity and the subsequent data exfiltration connections.

These actions required manual approval by the customer’s security team and as shown in Figure 3, at least one of the recommended actions was subsequently approved.

Had Darktrace been enabled in Autonomous Response mode, these measures would have been applied immediately, effectively halting the data exfiltration attempts.

Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.
Figure 4: Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.

Scattered Spider’s use of RaaS

In this recent Scattered Spider incident observed by Darktrace, exfiltration appears to have been the primary impact. While no signs of ransomware deployment were observed here, it is possible that this was the threat actors’ original intent, consistent with other recent Scattered Spider attacks involving RaaS platforms like DragonForce.

DragonForce emerged towards the end of 2023, operating by offering their platform and capabilities on a wide scale. They also launched a program which offered their affiliates 80% of the eventual ransom, along with tools for further automation and attack management [13].

The rise of RaaS and attacker customization is fragmenting TTPs and indicators, making it harder for security teams to anticipate and defend against each unique intrusion.

While DragonForce appears to be the latest RaaS used by Scattered Spider, it is not the first, showcasing the ongoing evolution of tactics used the group.

In addition, the BlackCat RaaS strain was reportedly used by Scattered Spider for their attacks against Caesars Entertainment and MGM Resorts International [10].

In 2024 the group was also seen making use of additional RaaS strains; RansomHub and Qilin [15].

What security teams and CISOs can do to defend against Scattered Spider

The ongoing changes in tactics used by Scattered Spider, reliance on LOTL techniques, and continued adoption of evolving RaaS providers like DragonForce make it harder for organizations and their security teams to prepare their defenses against such attacks.

CISOs and security teams should implement best practices such as MFA, Single Sign-On (SSO), notifications for suspicious logins, forward logging, ethical phishing tests.

Also, given Scattered Spider’s heavy focus on social engineering, and at times using their native English fluency to their advantage, it is critical to IT and help desk teams are reminded they are possible targets.

Beyond social engineering, the threat actor is also adept at taking advantage of third-party SaaS applications in use by victims to harvest common SaaS data, such as PII and configuration data, that enable the threat actor to take on multiple identities across different domains.

With Darktrace’s Self-Learning AI, anomaly-based detection, and Autonomous Response inhibitors, businesses can halt malicious activities in real-time, whether attackers are using known TTPs or entirely new ones. Offerings such as Darktrace /Attack Surface Management enable security teams to proactively identify signs of malicious activity before it can cause an impact, while more generally Darktrace’s ActiveAI Security Platform can provide a comprehensive view of an organization’s digital estate across multiple domains.

Credit to Justin Torres (Senior Cyber Analyst), Emma Foulger (Global Threat Research Operations Lead), Zaki Al-Dhamari (Cyber Analyst), Nathaniel Jones (VP, Security & AI Strategy, FCISO), and Ryan Traill (Analyst Content Lead)

---------------------

The information provided in this blog post is for general informational purposes only and is provided "as is" without any representations or warranties, express or implied. While Darktrace makes reasonable efforts to ensure the accuracy and timeliness of the content related to cybersecurity threats such as Scattered Spider, we make no warranties or guarantees regarding the completeness, reliability, or suitability of the information for any purpose.

This blog post does not constitute professional cybersecurity advice, and should not be relied upon as such. Readers should seek guidance from qualified cybersecurity professionals or legal counsel before making any decisions or taking any actions based on the content herein.

No warranty of any kind, whether express or implied, including, but not limited to, warranties of performance, merchantability, fitness for a particular purpose, or non-infringement, is given with respect to the contents of this post.

Darktrace expressly disclaims any liability for any loss or damage arising from reliance on the information contained in this blog.

Appendices

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-320a

[2] https://attack.mitre.org/groups/G1015/

[3] https://www.rapid7.com/blog/post/scattered-spider-rapid7-insights-observations-and-recommendations/

[4] https://www.crowdstrike.com/en-us/blog/scattered-spider-attempts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

[5] https://krebsonsecurity.com/2024/06/alleged-boss-of-scattered-spider-hacking-group-arrested/?web_view=true

[6] https://www.cxtoday.com/crm/uk-teenager-accused-of-hacking-twilio-lastpass-mailchimp-arrested/

[7] https://mailchimp.com/newsroom/august-2022-security-incident/

[8] https://techcrunch.com/2023/02/02/0ktapus-hackers-are-back-and-targeting-tech-and-gaming-companies-says-leaked-report/

[9] https://www.pcmag.com/news/hackers-behind-riot-games-breach-stole-league-of-legends-source-code

[10] https://www.bbrown.com/us/insight/a-look-back-at-the-mgm-and-caesars-incident/

[11] https://cyberresilience.com/threatonomics/scattered-spider-uk-retail-attacks/

[12] https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/

[13] https://www.group-ib.com/blog/dragonforce-ransomware/
[14] https://blackpointcyber.com/wp-content/uploads/2024/11/DragonForce.pdf
[15] https://x.com/MsftSecIntel/status/1812932749314978191?lang=en

Select MITRE tactics associated with Scattered Spider

Tactic – Technique – Technique Name

Reconnaissance - T1598 -   Phishing for Information

Initial Access - T1566 – Phishing

Execution - T1204 - User Execution

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Defense Evasion - T1656 - Impersonation

Credential Access - T1621 - Multi-Factor Authentication Request Generation

Lateral Movement - T1021 - Remote Services

Command and Control - T1102 - Web Service

Command and Control - T1219 - Remote Access Tools

Command and Control - T1572 - Protocol Tunneling

Exfiltration - T1567 - Exfiltration Over Web Service

Impact - T1657 - Financial Theft

Select MITRE tactics associated with DragonForce

Tactic – Technique – Technique Name

Initial Access, Defense Evasion, Persistence, Privilege Escalation - T1078 - Valid Accounts

Initial Access, Persistence - T1133 - External Remote Services

Initial Access - T1190 - Exploit Public-Facing Application

Initial Access - T1566 – Phishing

Execution - T1047 - Windows Management Instrumentation

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Lateral Movement - T1021 - Remote Services

Impact - T1486 - Data Encrypted for Impact

Impact - T1657 - Financial Theft

Select Darktrace models

Compliance / Internet Facing RDP Server

Compliance / Incoming Remote Access Tool

Compliance / Remote Management Tool on Server

Anomalous File / Internet Facing System File Download

Anomalous Server Activity/ New User Agent from Internet Facing System

Anomalous Connection / Callback on Web Facing Device

Device / Internet Facing System with High Priority Alert

Anomalous Connection / Unusual Admin RDP

Anomalous Connection / High Priority DRSGetNCChanges

Anomalous Connection / Unusual Internal SSH

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / Pastebin

Anomalous Connection / Possible Tunnelling to Rare Endpoint

Compromise / Beaconing Activity to External Rare

Device / Long Agent Connection to New Endpoint

Compromise / SSH to Rare External AWS

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Large Volume of LDAP Download

Unusual Activity / Internal Data Transfer on New Device

Anomalous Connection / Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Compromise / Ransomware/Suspicious SMB Activity

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

July 24, 2025

Closing the Cloud Forensics and Incident Response Skills Gap

DFIR skills gap, man working on computer, SOC analyst, incident response, cloud incident responseDefault blog imageDefault blog image

Every alert that goes uninvestigated is a calculated risk — and teams are running out of room for error

Security operations today are stretched thin. SOCs face an overwhelming volume of alerts, and the shift to cloud has only made triage more complex.

Our research suggests that 23% of cloud alerts are never investigated, leaving risk on the table.

The rapid migration to cloud resources has security teams playing catch up. While they attempt to apply traditional on-prem tools to the cloud, it’s becoming increasingly clear that they are not fit for purpose. Especially in the context of forensics and incident response, the cloud presents unique complexities that demand cloud-specific solutions.

Organizations are increasingly adopting services from multiple cloud platforms (in fact, recent studies suggest 89% of organizations now operate multi-cloud environments), and container-based and serverless setups have become the norm. Security analysts already have enough on their plates; it’s unrealistic to expect them to be cloud experts too.

Why Digital Forensics and Incident Response (DFIR) roles are so hard to fill

Compounding these issues of alert fatigue and cloud complexity, there is a lack of DFIR talent. The cybersecurity skills gap is a well-known problem.

According to the 2024 ISC2 Cybersecurity Workforce Study, there is a global shortage of 4.8 million cybersecurity workers, up 19% from the previous year.

Why is this such an issue?

  • Highly specialized skill set: DFIR professionals need to have a deep understanding of various operating systems, network protocols, and security architectures, even more so when working in the cloud. They also need to be proficient in using a wide range of forensic tools and techniques. This level of expertise takes a lot of time and effort to develop.
  • Rapid technological changes: The cloud landscape is constantly changing and evolving with new services, monitoring tools, security mechanisms, and threats emerging regularly. Keeping up with these changes and staying current requires continuous learning and adaptation.
  • Lack of formal education and training: There are limited educational programs specifically dedicated for DFIR. Further, an industry for cloud DFIR has yet to be defined. While some universities and institutions offer courses or certifications in digital forensics, they may not cover the full spread of knowledge required in real-world incident response scenarios, especially for cloud-based environments.
  • High-stress nature of the job: DFIR professionals often work under tight deadlines in high-pressure situations, especially when handling security incidents. This can lead to burnout and high turnover rates in the profession.

Bridging the skills gap with usable cloud digital forensics and incident response tools  

To help organizations close the DFIR skills gap, it's critical that we modernize our approaches and implement a new way of doing things in DFIR that's fit for the cloud era. Modern cloud forensics and incident response platforms must prioritize usability in order to up-level security teams. A platform that is easy to use has the power to:

  • Enable more advanced analysts to be more efficient and have the ability to take on more cases
  • Uplevel more novel analysts to perform more advanced tasks than ever before
  • Eliminate cloud complexity– such as the complexities introduced by multi-cloud environments and container-based and serverless setups

What to look for in cloud forensics and incident response solutions

The following features greatly improve the impact of cloud forensics and incident response:

Data enrichment: Automated correlation of collected data with threat intelligence feeds, both external and proprietary, delivers immediate insight into suspicious or malicious activities. Data enrichment expedites investigations, enabling analysts to seamlessly pivot from key events and delve deeper into the raw data.

Single timeline view: A unified perspective across various cloud platforms and data sources is crucial. A single timeline view empowers security teams to seamlessly navigate evidence based on timestamps, events, users, and more, enhancing investigative efficiency. Pulling together a timeline has historically been a very time consuming task when using traditional approaches.

Saved search: Preserving queries during investigations allows analysts to re-execute complex searches or share them with colleagues, increasing efficiency and collaboration.

Faceted search: Facet search options provide analysts with quick insights into core data attributes, facilitating efficient dataset refinement.

Cross-cloud investigations: Analyzing evidence acquired from multiple cloud providers in a single platform is crucial for security teams. A unified view and timeline across cross cloud is critical in streamlining investigations.

How Darktrace can help

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

Not only does Darktrace offer centralized automation solutions for cloud forensics and investigation, but it also delivers a proactive approach Cloud Detection and Response (CDR). Darktrace / CLOUD is built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI