Blog
/
Endpoint
/
December 12, 2022

ML Integration for Third-Party EDR Alerts

The advantages and benefits of combining EDR technologies with Darktrace: how this integration can enhance your cybersecurity strategy.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Dec 2022

This blog demonstrates how we use EDR integration in Darktrace for detection & investigation. We’ll look at four key features, which are summarized with an example below:  

1)    Contextualizing existing Darktrace information – E.g. ‘There was a Microsoft Defender for Endpoint (MDE) alert 5 minutes after Darktrace saw the device beacon to an unusual destination on the internet. Let me pivot back into the Defender UI’
2)    Cross-data detection engineering
‘Darktrace, create an alert or trigger a response if you see a specific MDE alert and a native Darktrace detection on the same entity over a period of time’
3)    Applying unsupervised machine learning to third-party EDR alerts
‘Darktrace, create an alert or trigger a response if there is a specific MDE alert that is unusual for the entity, given the context’
4)    Use third-party EDR alerts to trigger AI Analyst
‘AI Analyst, this low-fidelity MDE alert flagged something on the endpoint. Please take a deep look at that device at the time of the Defender alert, conduct an investigation on Darktrace data and share your conclusions about whether there is more to it or not’ 

MDE is used as an example above, but Darktrace’s EDR integration capabilities extend beyond MDE to other EDRs as well, for example to Sentinel One and CrowdStrike EDR.

Darktrace brings its Self-Learning AI to your data, no matter where it resides. The data can be anywhere – in email environments, cloud, SaaS, OT, endpoints, or the network, for example. Usually, we want to get as close to the raw data as possible to get the maximum context for our machine learning. 

We will explain how we leverage high-value integrations from our technology partners to bring further context to Darktrace, but also how we apply our Self-Learning AI to third-party data. While there are a broad range of integrations and capabilities available, we will primarily look at Microsoft Defender for Endpoint, CrowdStrike, and SentinelOne and focus on detection in this blog post. 

The Nuts and Bolts – Setting up the Integration

Darktrace is an open platform – almost everything it does is API-driven. Our system and machine learning are flexible enough to ingest new types of data & combine it with already existing information.  

The EDR integrations mentioned here are part of our 1-click integrations. All it requires is the right level of API access from the EDR solutions and the ability for Darktrace to communicate with the EDR’s API. This type of integration can be setup within minutes – it currently doesn’t require additional Darktrace licenses.

Figure 1: Set-up of Darktrace Graph Security API integration

As soon as the setup is complete, it enables various additional capabilities. 
Let’s look at some of the key detection & investigation-focussed capabilities step-by-step.

Contextualizing Existing Darktrace Information

The most basic, but still highly-useful integration is enriching existing Darktrace information with EDR alerts. Darktrace shows a chronological history of associated telemetry and machine learning for each entity observed in the entities event log. 

With an EDR integration enabled, we now start to see EDR alerts for the respective entities turn up in the entity’s event log at the correct point in time – with a ton of context and a 1-click pivot back to the native EDR console: 

Figure 2: A pivot from the Darktrace Threat Visualizer to Microsoft Defender

This context is extremely useful to have in a single screen during investigations. Context is king – it reduces time-to-meaning and skill required to understand alerts.

Cross-Data Detection Engineering

When an EDR integration is activated, Darktrace enables an additional set of detections that leverage the new EDR alerts. This comes out of the box and doesn’t require any further detection engineering. It is worth mentioning though that the new EDR information is being made available in the background for bespoke detection engineering, if advanced users want to leverage these as custom metrics.

The trick here is that the added context provided by the additional EDR alerts allows for more refined detections – primarily to detect malicious activity with higher confidence. A network detection showing us beaconing over an unusual protocol or port combination to a rare destination on the internet is great – but seeing within Darktrace that CrowdStrike detected a potentially hostile file or process three minutes prior to the beaconing detection on the same device will greatly help to prioritize the detections and aid a subsequent investigation.

Here is an example of what this looks like in Darktrace:

Figure 3: A combined model breach in the Threat Visualizer

Applying Unsupervised Machine Learning to Third-Party EDR Alerts


Once we start seeing EDR alerts in Darktrace, we can start treating it like any other data – by applying unsupervised machine learning to it. This means we can then understand how unusual a given EDR detection is for each device in question. This is extremely powerful – it allows to reduce noisy alerts without requiring ongoing EDR alert tuning and opens a whole world of new detection capabilities.

As an example – let’s imagine a low-level malware alert keeps appearing from the EDR on a specific device. This might be a false-positive in the EDR, or just not of interest for the security team, but they may not have the resources or knowledge to further tune their EDR and get rid of this noisy alert.

While Darktrace keeps adding this as contextual information in the device’s event log, it could, depending on the context of the device, the EDR alert, and the overall environment, stop alerting on this particular EDR malware alert on this specific device if it stops being unusual. Over time, noise is reduced across the environment – but if that particular EDR alert appears on another device, or on the same device in a different context, it might get flagged again, as it now is unusual in the given context.

Darktrace then goes a step further, taking those unusual EDR alerts and combining them with unusual activity seen in other Darktrace coverage areas, like the network for example. Combining an unusual EDR alert with an unusual lateral movement attempt, for example, allows it to find these combined, high-precision, cross-data set anomalous events that are highly indicative of an active cyber-attack – without having to pre-define the exact nature of what ‘unusual’ looks like.

Figure 4: Combined EDR & network detection using unsupervised machine learning in Darktrace

Use Third-Party EDR Alerts to Trigger AI Analyst

Everything we discussed so far is great for improving precision in initial detections, adding context, and cutting through alert-noise. We don’t stop there though – we can also now use the third-party EDR alerts to trigger our investigation engine, the AI Analyst.

Cyber AI Analyst replicates and automates typical level 1 and level 2 Security Operations Centre (SOC) workflows. It is usually triggered by every native Darktrace detection. This is not a SOAR where playbooks are statically defined – AI Analyst builds hypotheses, gathers data, evaluates the data & reports on its findings based on the context of each individual scenario & investigation. 

Darktrace can use EDR alerts as starting points for its investigation, with every EDR alert ingested now triggering AI Analyst. This is similar to giving a (low-level) EDR alert to a human analyst and telling them: ‘Go and take a look at information in Darktrace and try to conclude whether there is more to this EDR alert or not.’

The AI Analyst subsequently looks at the entity which had triggered the EDR alert and investigates all available Darktrace data on that entity, over a period of time, in light of that EDR alert. It does not pivot outside Darktrace itself for that investigation (e.g. back into the Microsoft console) but looks at all of the context natively available in Darktrace. If concludes that there is more to this EDR alert – e.g. a bigger incident – it will report on that and clearly flag it. The report can of course be directly downloaded as a PDF to be shared with other stakeholders.

This comes in handy for a variety of reasons – primarily to further automate security operations and alleviate pressure from human teams. AI Analyst’s investigative capabilities sit on top of everything we discussed so far (combining EDR detections with detections from other coverage areas, applying unsupervised machine learning to EDR detections, …).

However, it can also come in handy to follow up on low-severity EDR alerts for which you might not have the human resources to do so.

The below screenshot shows an example of a concluded AI Analyst investigation that was triggered by an EDR alert:

Figure 5: An AI Analyst incident trained on third-party data

The Impact of EDR Integrations

The purpose behind all of this is to augment human teams, save them time and drive further security automation.

By ingesting third-party endpoint alerts, combining it with our existing intelligence and applying unsupervised machine learning to it, we achieve that further security automation. 

Analysts don’t have to switch between consoles for investigations. They can leverage our high-fidelity detections that look for unusual endpoint alerts, in combination with our already powerful detections across cloud and email systems, zero trust architecture, IT and OT networks, and more. 

In our experience, this pinpoints the needle in the haystack – it cuts through noise and reduces the mean-time-to-detect and mean-time-to-investigate drastically.

All of this is done out of the box in Darktrace once the endpoint integrations are enabled. It does not need a data scientist to make the machine learning work. Nor does it need a detection engineer or threat hunter to create bespoke, meaningful detections. We want to reduce the barrier to entry for using detection and investigation solutions – in terms of skill and experience required. The system is still flexible, transparent, and open, meaning that advanced users can create their own combined detections, leveraging unsupervised machine learning across different data sets with a few clicks.

There are of course more endpoint integration capabilities available than what we covered here, and we will explore these in future blog posts.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Canadian critical cyber systems protection actDefault blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI