ブログ
/
/
March 14, 2021

Botnet and Remote Desktop Protocol Attacks

Understand the connection between botnet malware and RDP attacks, and how to safeguard your network from potential threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2021

What is Remote Desktop Protocol?

With the rise of the dynamic workforce, IT teams have been forced to rely on remote access more than ever before. There are now almost five million Remote Desktop Protocol (RDP) servers exposed to the Internet – around two million more than before the pandemic. Remote desktops are an essential feature for the majority of companies and yet are often exploited by cyber-criminals. Events such as the Florida water plant incident, where an attacker attempted to manipulate the chemical concentration in the water supply of a whole city, show how fatal the consequences of such a cyber-threat can be.

Last month, Darktrace detected a server-side attack at a technology company in the APAC region. The hackers brute-forced an RDP server and attempted to spread throughout the organization. The early detection of this breach was crucial in stopping the cyber-criminals before they could create a botnet and use it to cause serious damage, potentially launching a ransomware or distributed denial-of-service (DDoS) attack.

How to make a botnet

All it takes is one vulnerable RDP server for a threat actor to gain an initial foothold into an organization and spread laterally to build their botnet army. A bot is simply an infected device which can be controlled by a malicious third party; once a network of these hosts has been accumulated, a hacker can perform a range of actions, including:

  • Exfiltration of user credentials and payment data
  • Uploading Trojan malware to the server, which opens a backdoor to the system while masquerading as legitimate software
  • Deploying ransomware, as seen last year in a Dharma attack
  • Renting out access to the company’s infrastructure to other threat actors
  • Mining cryptocurrency with the CPUs of zombie devices

In fact, there is little an attacker can’t do once they have gained remote access to these devices. Botnet malware tends to contain self-updating functions that allow the owner to add or remove functionality. And because the attackers are using legitimate administrative RDP credentials, it is extremely difficult for traditional security tools to detect this malicious activity until it is far too late.

DDoS for hire: A cyber-criminal enterprise

The commerce of cyber-crime has boomed in recent years, further complicating matters. There are now subscription-based and rental models easily available on the Dark Web for a range of illegal activities from Ransomware-as-a-Service to private data auctions. As a result, it is becoming increasingly common for attackers to infect servers and sell the use of these bots online. DDoS for hire services offer access to botnets for as little as $20 per hour. In fact, some of these kits are even legal and market themselves as ‘IP stressers’ or ‘booters’, which can be used legitimately to test the resilience of a website, but are often exploited and used to take down sites and networks.

These developments have sparked a new wave in DDoS and botnet malware attacks as hackers capitalize on the added financial incentive to create botnets and rent them on the Dark Web. ‘Botnet builder’ tools help low-skilled attackers create bots by providing botnet malware and assisting with the initial infection. Sophisticated RDP attacks have blossomed as a result of these kits, which lower the skill-threshold of such attacks and thus make them widely accessible.

Automated RDP attack under the microscope

Figure 1: A timeline of the attack

An Internet-facing RDP server hosting an online games site was recently compromised at a technology company with around 500 devices on its network. The attacker used brute force to glean the correct password and gain remote access to the desktop. It was at this point that Darktrace’s Cyber AI began to detect unusual administrative RDP connections from rare external locations.

In many ways, this incident is typical of an RDP compromise. Credential brute-forcing is a common initial vector for server-side attacks, alongside credential stuffing and exploiting vulnerabilities. In this case, the threat actor likely planned to utilize the exposed server as a pivot point to infect other internal and external devices, possibly to create a botnet-for-hire or exfiltrate sensitive information.

Figure 2: Cyber AI Analyst highlights unusual connections to internal IP addresses from an example breach device

Approximately 14 hours after this compromise, the attacker downloaded multiple files from rare domains. Over the next 18 hours the attacker made over 4.4 million internal and external connection attempts on port 445 using the vulnerable SMBv1 protocol. The majority of these attempts were SMB Session Failures using the credential “administrator”. The server engaged in successful SMB sessions with over 270 internal and external IP addresses.

Outgoing connections to rare but benign locations on ports normally used internally may not match a specific attack profile, meaning they are missed by signature-based security tools. However, despite a lack of threat intelligence on the multiple file download sources, Darktrace’s AI was able to observe the highly unusual nature of the activity, leading to high-confidence detections.

Figure 3: An example graph from Darktrace’s Threat Visualizer showing a large increase in the number of anomalous external connections

Botnet malware and automation

The speed of movement and lack of data exfiltration in this incident suggest that the attack was automated, likely with the help of botnet builder tools. The use of automation to accelerate and mask the breach could have led to severe consequences had Darktrace not alerted the security team in the initial stages.

Attacks against Internet-facing RDP servers remain one of the most common initial infection vectors. With the rise of automated scanning services and botnet malware tools, the ease of compromise has shot up. It is only matter of time before exposed servers are exploited. Furthermore, heavily automated attacks are constantly running and can spread rapidly across the organization. In such cases, it is vital for security teams to be made aware of malicious activity on devices as quickly as possible.

Darktrace’s AI not only pinpointed by itself that the infection had originated on a specific RDP server, it also detected every step of the attack in real time, despite a lack of clear existing signatures. Self-learning AI detects anomalous activity for users and devices across the digital environment and is therefore crucial in shutting down threats at machine speed. Moreover, the visibility provided by Darktrace DETECT greatly reduces the attack surface and identifies badly maintained shadow IT, providing an extra layer of security over the digital business.

Thanks to Darktrace analyst Tom McHale for his insights on the above threat find.

Darktrace model detections:

  • Compliance / Internet Facing RDP Server
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Incoming RAR File
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Experimental / Rare Endpoint with Young Certificate
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / Anomalous Octet Stream
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Compliance / External Windows Communications
  • Anomalous Server Activity / Outgoing from Server
  • Device / Increased External Connectivity
  • Device / SMB Session Bruteforce
  • Unusual Activity / Unusual Activity from New Device
  • Device / Network Scan - Low Anomaly Score
  • Device / Large Number of Connections to New Endpoints
  • Device / High Volume of Connections from Guest or New Device
  • Compromise / Suspicious File and C2
  • Anomalous File / Script from Rare Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise
  • Anomalous Server Activity / Rare External from Server
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Suspicious Domain
  • Compromise / Beacon to Young Endpoint

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ