Blog
/
/
March 14, 2021

Botnet and Remote Desktop Protocol Attacks

Understand the connection between botnet malware and RDP attacks, and how to safeguard your network from potential threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Mar 2021

What is Remote Desktop Protocol?

With the rise of the dynamic workforce, IT teams have been forced to rely on remote access more than ever before. There are now almost five million Remote Desktop Protocol (RDP) servers exposed to the Internet – around two million more than before the pandemic. Remote desktops are an essential feature for the majority of companies and yet are often exploited by cyber-criminals. Events such as the Florida water plant incident, where an attacker attempted to manipulate the chemical concentration in the water supply of a whole city, show how fatal the consequences of such a cyber-threat can be.

Last month, Darktrace detected a server-side attack at a technology company in the APAC region. The hackers brute-forced an RDP server and attempted to spread throughout the organization. The early detection of this breach was crucial in stopping the cyber-criminals before they could create a botnet and use it to cause serious damage, potentially launching a ransomware or distributed denial-of-service (DDoS) attack.

How to make a botnet

All it takes is one vulnerable RDP server for a threat actor to gain an initial foothold into an organization and spread laterally to build their botnet army. A bot is simply an infected device which can be controlled by a malicious third party; once a network of these hosts has been accumulated, a hacker can perform a range of actions, including:

  • Exfiltration of user credentials and payment data
  • Uploading Trojan malware to the server, which opens a backdoor to the system while masquerading as legitimate software
  • Deploying ransomware, as seen last year in a Dharma attack
  • Renting out access to the company’s infrastructure to other threat actors
  • Mining cryptocurrency with the CPUs of zombie devices

In fact, there is little an attacker can’t do once they have gained remote access to these devices. Botnet malware tends to contain self-updating functions that allow the owner to add or remove functionality. And because the attackers are using legitimate administrative RDP credentials, it is extremely difficult for traditional security tools to detect this malicious activity until it is far too late.

DDoS for hire: A cyber-criminal enterprise

The commerce of cyber-crime has boomed in recent years, further complicating matters. There are now subscription-based and rental models easily available on the Dark Web for a range of illegal activities from Ransomware-as-a-Service to private data auctions. As a result, it is becoming increasingly common for attackers to infect servers and sell the use of these bots online. DDoS for hire services offer access to botnets for as little as $20 per hour. In fact, some of these kits are even legal and market themselves as ‘IP stressers’ or ‘booters’, which can be used legitimately to test the resilience of a website, but are often exploited and used to take down sites and networks.

These developments have sparked a new wave in DDoS and botnet malware attacks as hackers capitalize on the added financial incentive to create botnets and rent them on the Dark Web. ‘Botnet builder’ tools help low-skilled attackers create bots by providing botnet malware and assisting with the initial infection. Sophisticated RDP attacks have blossomed as a result of these kits, which lower the skill-threshold of such attacks and thus make them widely accessible.

Automated RDP attack under the microscope

Figure 1: A timeline of the attack

An Internet-facing RDP server hosting an online games site was recently compromised at a technology company with around 500 devices on its network. The attacker used brute force to glean the correct password and gain remote access to the desktop. It was at this point that Darktrace’s Cyber AI began to detect unusual administrative RDP connections from rare external locations.

In many ways, this incident is typical of an RDP compromise. Credential brute-forcing is a common initial vector for server-side attacks, alongside credential stuffing and exploiting vulnerabilities. In this case, the threat actor likely planned to utilize the exposed server as a pivot point to infect other internal and external devices, possibly to create a botnet-for-hire or exfiltrate sensitive information.

Figure 2: Cyber AI Analyst highlights unusual connections to internal IP addresses from an example breach device

Approximately 14 hours after this compromise, the attacker downloaded multiple files from rare domains. Over the next 18 hours the attacker made over 4.4 million internal and external connection attempts on port 445 using the vulnerable SMBv1 protocol. The majority of these attempts were SMB Session Failures using the credential “administrator”. The server engaged in successful SMB sessions with over 270 internal and external IP addresses.

Outgoing connections to rare but benign locations on ports normally used internally may not match a specific attack profile, meaning they are missed by signature-based security tools. However, despite a lack of threat intelligence on the multiple file download sources, Darktrace’s AI was able to observe the highly unusual nature of the activity, leading to high-confidence detections.

Figure 3: An example graph from Darktrace’s Threat Visualizer showing a large increase in the number of anomalous external connections

Botnet malware and automation

The speed of movement and lack of data exfiltration in this incident suggest that the attack was automated, likely with the help of botnet builder tools. The use of automation to accelerate and mask the breach could have led to severe consequences had Darktrace not alerted the security team in the initial stages.

Attacks against Internet-facing RDP servers remain one of the most common initial infection vectors. With the rise of automated scanning services and botnet malware tools, the ease of compromise has shot up. It is only matter of time before exposed servers are exploited. Furthermore, heavily automated attacks are constantly running and can spread rapidly across the organization. In such cases, it is vital for security teams to be made aware of malicious activity on devices as quickly as possible.

Darktrace’s AI not only pinpointed by itself that the infection had originated on a specific RDP server, it also detected every step of the attack in real time, despite a lack of clear existing signatures. Self-learning AI detects anomalous activity for users and devices across the digital environment and is therefore crucial in shutting down threats at machine speed. Moreover, the visibility provided by Darktrace DETECT greatly reduces the attack surface and identifies badly maintained shadow IT, providing an extra layer of security over the digital business.

Thanks to Darktrace analyst Tom McHale for his insights on the above threat find.

Darktrace model detections:

  • Compliance / Internet Facing RDP Server
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Incoming RAR File
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Experimental / Rare Endpoint with Young Certificate
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / Anomalous Octet Stream
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Compliance / External Windows Communications
  • Anomalous Server Activity / Outgoing from Server
  • Device / Increased External Connectivity
  • Device / SMB Session Bruteforce
  • Unusual Activity / Unusual Activity from New Device
  • Device / Network Scan - Low Anomaly Score
  • Device / Large Number of Connections to New Endpoints
  • Device / High Volume of Connections from Guest or New Device
  • Compromise / Suspicious File and C2
  • Anomalous File / Script from Rare Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise
  • Anomalous Server Activity / Rare External from Server
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Suspicious Domain
  • Compromise / Beacon to Young Endpoint

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Canadian critical cyber systems protection actDefault blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI