ブログ
/
/
April 17, 2024

Cerber Ransomware: Dissecting the three heads

Cerber ransomware's Linux variant is actively exploiting CVE-2023-22518 in Confluence servers. It uses three UPX-packed C++ payloads: a primary stager, a log checker for environment assessment, and an encryptor that renames files with a .L0CK3D extension.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Apr 2024

Introduction: Cerber ransomware

Researchers at Cado Security Labs (now part of Darktrace) received reports of the Cerber ransomware being deployed onto servers running the Confluence application via the CVE-2023-22518 exploit. [1] There is a large amount of coverage on the Windows variant, however there is very little about the Linux variant. This blog will discuss an analysis of the Linux variant. 

Cerber emerged and was at the peak of its activity around 2016, and has since only occasional campaigns, most recently targeting the aforementioned Confluence vulnerability. It consists of three highly obfuscated C++ payloads, compiled as a 64-bit Executable and Linkable Format (ELF, the format for executable binary files on Linux) and packed with UPX. UPX is a very common packer used by many threat actors. It allows the actual program code to be stored encoded in the binary, and at runtime extracted into memory and executed (“unpacked”). This is done to prevent software from scanning the payload and detecting the malware.

Pure C++ payloads are becoming less common on Linux, with many threat actors now employing newer programming languages such as Rust or Go. [2] This is likely due to the Cerber payload first being released almost 8 years ago. While it will have certainly received updates, the language and tooling choices are likely to have stuck around for the lifetime of the payload.

Initial access

Cado researchers observed instances of the Cerber ransomware being deployed after a threat actor leveraged CVE-2023-22518 in order to gain access to vulnerable instances of Confluence [3]. It is an improper authorization vulnerability that allows an attacker to reset the Confluence application and create a new administrator account using an unprotected configuration restore endpoint used by the setup wizard.

[19/Mar/2024:15:57:24 +0000] - http-nio-8090-exec-10 13.40.171.234 POST /json/setup-restore.action?synchronous=true HTTP/1.1 302 81796ms - - python-requests/2.31.0 
[19/Mar/2024:15:57:24 +0000] - http-nio-8090-exec-3 13.40.171.234 GET /json/setup-restore-progress.action?taskId= HTTP/1.1 200 108ms 283 - python-requests/2.31.0 

Once an administrator account is created, it can be used to gain code execution by uploading & installing a malicious module via the admin panel. In this case, the Effluence web shell plugin is directly uploaded and installed, which provides a web UI for executing arbitrary commands on the host.

Web Shell recreation
Figure 1: Recreation of installing a web shell on a Confluence instance

The threat actor uses this web shell to download and run the primary Cerber payload. In a default install, the Confluence application is executed as the “confluence” user, a low privilege user. As such, the data the ransomware is able to encrypt is limited to files owned by the confluence user. It will of course succeed in encrypting the datastore for the Confluence application, which can store important information. If it was running as a higher privilege user, it would be able to encrypt more files, as it will attempt to encrypt all files on the system.

Primary payload

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Serves as a stager for further payloads
  • Uses a C2 server at 45[.]145[.]6[.]112 to download and unpack further payloads
  • Deletes itself off disk upon execution

The primary payload is packed with UPX, just like the other payloads. Its main purpose is to set up the environment and grab further payloads in order to run.

Upon execution it unpacks itself and tries to create a file at /var/lock/0init-ld.lo. It is speculated that this was meant to serve as a lock file and prevent duplicate execution of the ransomware, however if the lock file already exists the result is discarded, and execution continues as normal anyway. 

It then connects to the (now defunct) C2 server at 45[.]145[.]6[.]112 and pulls down the secondary payload, a log checker, known internally as agttydck. It does this by doing a simple GET /agttydcki64 request to the server using HTTP and writing the payload body out to /tmp/agttydck.bat. It then executes it with /tmp and ck.log passed as arguments. The execution of the payload is detailed in the next section.

Once the secondary payload has finished executing, the primary payload checks if the log file at /tmp/ck.log it wrote exists. If it does, it then proceeds to delete itself and agttydcki64 from the disk. As it is still running in memory, it then downloads the encryptor payload, known internally as agttydcb, and drops it at /tmp/agttydcb.bat. The packing on this payload is more complex. The file command reports it as a DOS executable and the bat extension would imply this as well. However, it does not have the correct magic bytes, and the high entropy of the file suggests that it is potentially encoded or encrypted. Indeed, the primary payload reads it in and then writes out a decoded ELF file back using the same stream, overwriting the content. It is unclear the exact mechanism used to decode agttydcb. The primary payload then executes the decoded agttydcb, the behavior of which is documented in a later section.

2283  openat(AT_FDCWD, "/tmp/agttydcb.bat", O_RDWR) = 4 
2283  read(4, "\353[\254R\333\372\22,\1\251\f\235 'A>\234\33\25E3g\335\0252\344vBg\177\356\321"..., 450560) = 450560 
2283  lseek(4, 0, SEEK_SET)             = 0 
2283  write(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\2\0>\0\1\0\0\0X\334F\0\0\0\0\0"..., 450560) = 450560 
2283  close(4)                          = 0 

Truncated strace output for the decoding process

Log check payload - agttydck

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Tries to write the phrase “success” to a given file passed in arguments
  • Likely a check for sandboxing, or to check the permission level of the malware on the system

The log checker payload, agttydck, likely serves as a permission checker. It is a very simple payload and was easy to analyze statically despite the obfuscation. Like the other payloads, it is UPX packed.

When run, it concatenates each argument passed to it and delimits with forward slashes in order to obtain a full path. In this case, it is passed /tmp and ck.log, which becomes /tmp/ck.log. It then tries to open this file in write mode, and if it succeeds writes the word “success” and returns 0. If it does not succeed, it returns 1.

cleaned-up routine
Figure 2: Cleaned-up routine that writes out the success phrase

The purpose of this check isn’t exactly clear. It could be to check if the tmp directory is writable and that it can write, which may be a check for if the system is too locked down for the encryptor to work. Given the check is run in a process separate to the primary payload, it could also be an attempt to detect sandboxes that may not handle files correctly, resulting in the primary payload not being told about the file created by the child.

Encryptor - agttydck

Summary of payload:

  • Written in C++, highly obfuscated, and packed with UPX
  • Writes log file /tmp/log.0 on start and /tmp/log.1 on completion, likely for debugging
  • Walks the root directory looking for directories it can encrypt
  • Writes a ransom note to each directory
  • Overwrites all files in directory with their encrypted content and adds a .L0CK3D extension

The encryptor, agttydcb, achieves the goal of the ransomware, which is to encrypt files on the filesystem. Like the other payloads, it is UPX packed and written with heavily obfuscated C++. Upon launch, it deletes itself off disk so as to not leave any artefacts. It then creates a file at /tmp/log.0, but with no content. As it creates a second file at /tmp/log.1 (also with no content) after encryption finishes, it is possible these were debug markers that the attacker mistakenly left in.

The encryptor then spawns a new thread to do the actual encryption. The payload attempts to write a ransom note at /<directory>/read-me3.txt. If it succeeds, it will walk all files in the directory and attempt to encrypt them. If it fails, it moves on to the next directory. The encryptor chooses to pick which directories to encrypt by walking the root file system. For example, it will try to encrypt /usr, and then /var, etc.

Cerber ransom note
Figure 3: Ransom note left by Cerber

When it has identified a file to encrypt, it opens a read-write file stream to the file and reads in the entire file. It is then encrypted in memory before it seeks to the start of the stream and writes the encrypted data, overwriting the file content, and rendering the file fully encrypted. It then renames the file to have the .L0CK3D extension. Rewriting the same file instead of making a new file and deleting the old one is useful on Linux as directories may be set to append only, preventing the outright deletion of files. Rewriting the file may also rewrite the data on the underlying storage, making recovery with advanced forensics also impossible.

2290  openat(AT_FDCWD, "/home/ubuntu/example", O_RDWR) = 6 
2290  read(6, "file content"..., 3691) = 3691 
2290  write(6, "\241\253\270'\10\365?\2\300\304\275=\30B\34\230\254\357\317\242\337UD\266\362\\\210\215\245!\255f"
..., 3691) = 3691 
2290  close(6)                          = 0 
2290  rename("/home/ubuntu/example", "/home/ubuntu/example.L0CK3D") = 0 

Truncated strace of the encryption process

Once this finishes, it tries to delete itself again (which fails as it already deleted itself) and creates /tmp/log.1. It then gracefully exits. Despite the ransom note claiming the files were exfiltrated, Cado researchers did not observe any behavior that showed this.

Conclusion

Cerber is a relatively sophisticated, albeit aging, ransomware payload. While the use of the Confluence vulnerability allows it to compromise a large amount of likely high value systems, often the data it is able to encrypt will be limited to just the confluence data and in well configured systems this will be backed up. This greatly limits the efficacy of the ransomware in extracting money from victims, as there is much less incentive to pay up.

IoCs

The payloads are packed with UPX so will match against existing UPX Yara rules.

Hashes (sha256)

cerber_primary 4ed46b98d047f5ed26553c6f4fded7209933ca9632b998d265870e3557a5cdfe

agttydcb 1849bc76e4f9f09fc6c88d5de1a7cb304f9bc9d338f5a823b7431694457345bd

agttydck ce51278578b1a24c0fc5f8a739265e88f6f8b32632cf31bf7c142571eb22e243

IPs

C2 (Defunct) 45[.]145[.]6[.]112

References

  1. https://confluence.atlassian.com/security/cve-2023-22518-improper-authorization-vulnerability-in-confluence-data-center-and-server-1311473907.html
  1. https://www.proofpoint.com/uk/threat-reference/cerber-ransomware  
  1. https://nvd.nist.gov/vuln/detail/CVE-2023-22518

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

Default blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

Default blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI