Blog
/
Network
/
March 20, 2025

Cyberhaven Supply Chain Attack: Exploiting Browser Extensions

In late 2024, Darktrace detected unusual activity linked to Cyberhaven's Chrome browser extension. Read more about Darktrace’s investigation here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Mar 2025

The evolution of supply chain attacks

Supply chain attacks are becoming increasingly sophisticated. As network defenses improve, threat actors continuously adapt and refine their tactics, techniques, and procedures (TTPs) to achieve their goals. In recent years, this has led to a rise in the exploitation of trusted services and software, including legitimate browser extensions. Exploitation of these extensions can provide adversaries with a stealthy means to infiltrate target networks and access high-value accounts undetected.

A notable example of this trend was the compromise of the Cyberhaven Chrome extension at the end of 2024. This incident appeared to be part of a broader campaign targeting multiple Chrome browser extensions, highlighting the evolving nature of supply chain attacks [1].

What is Cyberhaven?

Cyberhaven, a US-based data security organization, experienced a security breach on December 24, 2024, when a phishing attack reportedly compromised one of their employee's credentials [2]. This allowed attackers to publish a malicious version of the Cyberhaven Chrome extension, which exfiltrated cookies and authenticated sessions from targeted websites. The malicious extension was active from December 25 to December 26 – a time when most businesses and employees were out of office and enjoying the festive period, a fact not lost on threat actors. The attackers, likely a well-organized and financially motivated group, compromised more than 30 additional Chrome extensions, affecting more than 2.6 million users [3]. They used sophisticated phishing techniques to authorize malicious OAuth applications, bypassing traditional security measures and exploiting vulnerabilities in OAuth authorizations. The primary motive appeared to be financial gain, targeting high-value platforms like social media advertising and AI services [4].

In late December 2024, multiple Darktrace customers were compromised via the Cyberhaven Chrome extension; this blog will primarily focus on Darktrace / NETWORK detections from one affected customer.

Darktrace’s coverage of Cyberhaven compromises

On December 26, 2024, Darktrace identified a series of suspicious activities across multiple customer environments, uncovering a structured attack sequence that progressed from initial intrusion to privilege escalation and data exfiltration. The attack was distributed through a malicious update to the Cyberhaven Chrome extension [2]. The malicious update established a foothold in customer environments almost immediately, leading to further anomalies.

As with other Chrome browser extensions, Cyberhaven Chrome extensions were updated automatically with no user interaction required. However, in this instance, the automatic update included a malicious version which was deployed to customer environments. This almost immediately introduced unauthorized activity, allowing attackers to establish a foothold in customer networks. The update allowed attackers to execute their objectives in the background, undetected by traditional security tools that rely on known indicators of compromise (IoCS) rather than identifying anomalies.

While multiple customer devices were seen connecting to cyberhaven[.]io, a legitimate Cyberhaven domain, Darktrace detected persistent beaconing behavior to cyberhavenext[.]pro, which appeared to be attempting to masquerade as another legitimate Cyberhaven domain. Darktrace recognized this activity as unusual, triggering several model alerts in Darktrace / NETWORK to highlight the persistent outbound connections to the suspicious domain.

Further analysis of external connectivity patterns indicated  an increase in anomalous HTTP requests alongside this beaconing activity. Multiple open-source intelligence (OSINT) sources also suggest that the cyberhavenext[.]pro endpoint is associated with malicious activities [5].

Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro
Figure 1: Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro

Analysis using Darktrace’s Advanced Search revealed that some of these connections were directed to the suspicious external IP address 149.28.124[.]84. Further investigation confirmed that the IP correlated with two SSL hostnames, including the malicious cyberhavenext[.]pro, further reinforcing its connection to the attack infrastructure.

Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.
Figure 2: Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.

Between December 23 and December 27, Darktrace observed sustained beaconing-like activity from affected devices on the customer’s network.

Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.
Figure 3: Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.

Darktrace observed 27 unique devices connecting to the malicious command-and-control (C2) infrastructure as far back as December 3. While most connections were brief, they represented an entry point for malicious activity. Over a two-day period, two devices transmitted 5.57 GiB of incoming data and 859.37 MiB of outgoing data, generating over 3 million log events across SSL, HTTP, and connection data.

Subsequent analysis identified a significant increase in unauthorized data transfers to the aforementioned 149.28.124[.]84 IP on another customer network, highlighting the potential broader impact of this compromise. The volume and frequency of these transfers suggested that attackers were leveraging automated data collection techniques, further underscoring the sophistication of the attack.

Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.
Figure 4: Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.

External research suggested that once active, the Cyberhaven extension would begin silently collecting session cookies and authentication tokens, specifically targeting high-value accounts such as Facebook Ads accounts [4]. Darktrace’s analysis of another affected customer noted many HTTP POST connections directed to a specific URI ("ai-cyberhaven"), while GET requests contained varying URIs prefixed with "/php/urlblock?args=AAAh....--redirect." This activity indicated an exfiltration mechanism, consistent with techniques observed in other compromised Chrome extensions. By compromising session cookies, attackers could potentially gain administrative access to connected accounts, further escalating their privileges [4].

Conclusion

This incident highlights the importance of monitoring not just endpoint security, but also cloud and browser-based security solutions, as attackers increasingly target these trusted and oft overlooked vectors.

Ultimately, by focusing on anomaly detection and behavioral analysis rather than static signatures and lists of ‘known bads’, Darktrace was able to successfully detect devices affected by the Cyberhaven Chrome browser extension compromise, by identifying activity that would likely have been considered legitimate and benign by traditional security solutions.

This compromise also serves as a reminder that supply chain attacks are not limited to traditional software vendors. Browser extensions, cloud-based applications, and SaaS services are equally vulnerable, as evidenced by Darktrace's detection of Balada Injector malware exploiting WordPress vulnerabilities to gain unauthorized network access [6]. Therefore, increased targeting of browser-based security tools, and a greater exploitation of OAuth and session hijacking techniques are to be expected. Attackers will undoubtedly refine their methods to infiltrate legitimate vendors and distribute malicious updates through trusted channels. By staying informed, vigilant, and proactive, organizations can mitigate exposure to evolving supply chain threats and safeguard their critical assets from emerging browser-based attack techniques.

Credit to Rajendra Rushanth (Cyber Analyst) Justin Torres (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

[related-resource]

Appendices

Darktrace Model Detections

·       Compromise / Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Beacon for 4 Days (AP: C2 Comms)

·       Compromise / HTTP Beaconing to Rare Destination (AP: C2 Comms)

·       Device / Suspicious Domain (AP: C2 Comms, AP: Tooling)

·       Compromise / Sustained TCP Beaconing Activity To Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Rare External from Server (AP: C2 Comms)

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Anomalous External Activity from Critical Network Device (AP: C2 Comms)

·       Compromise / Slow Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Repeating Connections Over 4 Days (AP: C2 Comms)

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname (AP: C2 Comms)

·       Anomalous Server Activity / Outgoing from Server (AP: C2 Comms)

·       Compromise / High Volume of Connections with Beacon Score (AP: C2 Comms)

·       Compromise / Large Number of Suspicious Failed Connections (AP: C2 Comms)

·       Email Nexus / Connection to Hijacked Correspondent Link

·       Compromise / Suspicious TLS Beaconing To Rare External (AP: C2 Comms)

·       Compromise / Quick and Regular Windows HTTP Beaconing (AP: C2 Comms)

List of IoCs

IoC - Type - Description + Confidence

cyberhavenext[.]pro - Hostname - Used for C2 communications and data exfiltration (cookies and session tokens)

149.28.124[.]84 - IP - Associated with malicious infrastructure

45.76.225[.]148 - IP - Associated with malicious infrastructure

136.244.115[.]219 - IP - Associated with malicious infrastructure

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

INITIAL ACCESS - T1176 - Browser Extensions

EXECUTION - T1204.002 - Malicious Browser Extensions

PERSISTENCE - T1176 - Browser Extensions

COMMAND AND CONTROL - T1071.001 - Web Protocols

COMMAND AND CONTROL - T1001 - Data Obfuscation

CREDENTIAL ACCESS - T1539 - Steal Web Session Cookie

DISCOVERY - T1518.001 - Security Software Discovery

LATERAL MOVEMENT - T1557.003 - Man-in-the-Browser

EXFILTRATION - T1041 - Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 - Exfiltration to Cloud Storage

IMPACT - T1583.006 - Session Hijacking

References

[1] https://thehackernews.com/2024/12/16-chrome-extensions-hacked-exposing.html

[2] https://www.cyberhaven.com/blog/cyberhavens-chrome-extension-security-incident-and-what-were-doing-about-it

[3] https://www.infosecurity-magazine.com/news/chrome-browser-extensions-hijacked/

[4] https://www.theverge.com/2024/12/28/24330758/chrome-extension-cyberhaven-hijack-phishing-cyberattack-facebook-ads-authentication-theft

[5] https://www.virustotal.com/gui/domain/cyberhavenext.pro

[6] https://darktrace.com/blog/balada-injector-darktraces-investigation-into-the-malware-exploiting-wordpress-vulnerabilities

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Rajendra Rushanth
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

Default blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI