Blog
/
/
December 20, 2022

How to Select the Right Cybersecurity AI

Choosing the right cybersecurity AI is crucial. Darktrace's guide provides insights and tips to help you make an informed decision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2022

AI has long been a buzzword – we started seeing it utilized in consumer space; in social media, e-commerce, and even in our music preference! In the past few years it has started to make its way through the enterprise space, especially in cyber security.

Increasingly, we see threat actors utilizing AI in their attack techniques. This is inevitable with the advancements in AI technology, the lower barrier to entry to the cyber security industry, and the continued profitability of being a threat actor. Surveying security decision makers across different industries like financial services and manufacturing, 77% of the respondents expect weaponized AI to lead to an increase in the scale and speed of attacks. 

Defenders are also ramping up their use of AI in cyber security – with more than 80% of the respondents agreeing that organizations require advanced defenses to combat offensive AI – resulted in a ‘cyber arms race’ with adversaries and security teams in constant pursuit of the latest technological advancements.  

The rules and signature approach is no longer sufficient in this evolving threat landscape. Because of this collective need, we will continue to see the push of AI innovations in this space as well. By 2025, cyber security technologies will account for 25% of the AI software market.

Despite the intrigue surrounding AI, many people have a limited understanding of how it truly works. The mystery of AI technology is what piques the interest of many cyber security practitioners. As an industry we also know that AI is necessary for advancement, but there is so much noise around AI and machine learning that some teams struggle to understand it. The paradox of choice leaves security teams more frustrated and confused by all the options presented to them.

Identifying True AI

You first need to define what you want the AI technology to solve. This might seem trivial, but many security teams often forget to come back to the fundamentals: what problem are you addressing? What are you trying to improve? 

Not every process needs AI; some processes will simply need automation – these are the more straightforward parts of your business. More complex and bigger systems require AI. The crux is identifying these parts of your business, applying AI and being clear of what you are going to achieve with these AI technologies. 

For example, when it comes to factory floor operations or tracking leave days of employees, businesses employ automation technologies, but when it comes to business decisions like PR strategies or new business exploration, AI is used to predict trends and help business owners make these decisions. 

Similarly, in cyber security, when dealing with known threats such as known malicious malware and hosting sites, automation is great at keeping track of them; workflows and playbooks are also best assessed with automation tools. However, when it comes to unknown unknowns like zero-day attacks, insider threats, IoT threats and supply chain attacks, AI is needed to detect and respond these threats as they emerge.

Automation is often communicated as AI, and it becomes difficult for security teams to differentiate. Automation helps you to quickly make a decision you already know you will make, whereas true AI helps you make a better decision.

Key ways to differentiate true AI from automation:

  • The Data Set: In automation, what you are looking for is very well-scoped. You already know what you are looking for – you are just accelerating the process with rules and signatures. True AI is dynamic. You no longer need to define activities that deserve your attention, the AI highlights and prioritizes this for you.
  • Bias: When you define what you are looking for, as humans inherently we impose our biases on these decisions. We are also limited by our knowledge at that point in time – this leaves out the crucial unknown unknowns.
  • Real-time: Every organization is always changing and it is important that AI takes all that data into consideration. True AI that is real time and also changes with your organization’s growth is hard to find. 

Our AI Research Centre has produced numerous papers on the applications of true AI in cyber security. The Centre comprises of more than 150 members and has more than 100 patents and patents pending. Some of the featured white papers include research on Attack Path Modeling and using AI as a preventative approach in your organization. 

Integrating AI Outputs with People, Process, and Technology


Integrating AI with People

We are living in the time of trust deficit, and that applies to AI as well. As humans we can be skeptical with AI, so how do we build trust for AI such that it works for us? This applies not only to the users of the technology, but the wider organization as well. Since this is the People pillar, the key factors to achieving trust in AI is through education, culture, and exposure. In a culture where people are open to learn and try new AI technologies, we will naturally build trust towards AI over time.

Integrating AI with Process

Then we should consider the integration of AI and its outputs into your workflow and playbooks. To make decisions around that, security managers need to be clear what their security priorities are, or which security gaps a particular technology is meant to fill. Regardless of whether you have an outsourced MSSP/SOC team, 50-strong in-house SOC team, or even just a 2-man team, it is about understanding your priorities and assigning the proper resources to them.

Integrating AI with Technology 

Finally, there is the integration of AI with your existing technology stack. Most security teams deploy different tools and services to help them achieve different goals – whether it is a tool like SIEM, a firewall, an endpoint, or services like pentesting, or vulnerability assessment exercises. One of the biggest challenges is putting all of this information together and pulling actionable insights out of them. Integration on multiple levels is always challenging with complex technologies because they technologies can rate or interpret threats differently.

Security teams often find themselves spending the most time making sense of the output of different tools and services. For example, taking the outcomes from a pentesting report and trying to enhance SOAR configurations, or looking at SOC alerts to advise firewall configurations, or taking vulnerability assessment reports to scope third-party Incident Response teams.

These tools can have a strong mastery of large volumes of data, but eventually ownership of the knowledge should still lie with the human teams – and the way to do that is with continuous feedback and integration. It is no longer efficient to use human teams to carry out this at scale and at speed. 

The Cyber AI Loop is Darktrace’s approach to cyber security. The four product families make up a key aspect of an organization’s cyber security posture. Darktrace PREVENT, DETECT, RESPOND and HEAL each feed back into a continuous, virtuous cycle, constantly strengthening each other’s abilities. 

This cycle augments humans at every stage of an incident lifecycle. For example, PREVENT may alert you to a vulnerability which holds a particularly high risk potential for your organization. It provides clear mitigation advice, and while you are on this, PREVENT will feed into DETECT and RESPOND, which are immediately poised to kick in should an attack occur in the interim. Conversely, once an attack has been contained by RESPOND, it will feed information back into PREVENT which will anticipate an attacker’s likely next move. Cyber AI Loop helps you harden security a holistic way so that month on month, year on year, the organization continuously improves its defensive posture. 

Explainable AI

Despite its complexity, AI needs to produce outputs that are clear and easy to understand in order to be useful. In the heat of the moment during a cyber incident, human teams need to quickly comprehend: What happened here? When did it happen? What devices are affected? What does it mean for my business? What should I deal with first?

To this end, Darktrace applies another level of AI on top of its initial findings that autonomously investigates in the background, reducing a mass of individual security events to just a few overall cyber incidents worthy of human review. It generates natural-language incident reports with all the relevant information for your team to make judgements in an instant. 

Figure 1: An example of how Darktrace filters individual model breaches into incidents and then critical incidents for the human to review 

Cyber AI Analyst does not only take into consideration network detection but also in your endpoints, your cloud space, IoT devices and OT devices. Cyber AI Analyst also looks at your attack surface and the risks associated to triage and show you the most prioritized alerts that if unexpected would cause maximum damage to your organization. These insights are not only delivered in real time but also unique to your environment.

This also helps address another topic that frequently comes up in conversations around AI: false positives. This is of course a valid concern: what is the point of harvesting the value of AI if it means that a small team now must look at thousands of alerts? But we have to remember that while AI allows us to make more connections over the vastness of logs, its goal is not to create more work for security teams, but to augment them instead.

To ensure that your business can continue to own these AI outputs and more importantly the knowledge, Explainable AI such as that used in Darktrace’s Cyber AI Analyst is needed to interpret the findings of AI, to ensure human teams know what happened, what action (if any) the AI took, and why. 

Conclusion

Every organization is different, and its security should reflect that. However, some fundamental common challenges of AI in cyber security are shared amongst all security teams, regardless of size, resources, industry vertical, and culture. Their cyber strategy and maturity levels are what sets them apart. Maturity is not defined by how many professional certifications or how many years of experience the team has. A mature team works together to solve problems. They understand that while AI is not the silver bullet, it is a powerful bullet that if used right, will autonomously harden the security of the complete digital ecosystem, while augmenting the humans tasked with defending it. 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Germaine Tan
VP, Security & AI Strategy, Field CISO | Darktrace

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI