Blog
/
Cloud
/
December 5, 2024

Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond

In the coming years, cloud security will not only need to adapt to increasingly complex environments as ecosystems become more distributed, but also to rapidly evolving threats like supply chain attacks, advanced misconfiguration exploits, and credential theft. AI-powered cloud security tools can help security teams keep up.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Dec 2024

Cloud security in 2025

The future of cybersecurity is being shaped by the rapid adoption of cloud technologies.

As Gartner reports, “By 2027, more than 70% of enterprises will use industry cloud platforms to accelerate their business initiatives, up from less than 15% in 2023” [1].

As organizations continue to transition workloads and sensitive data to cloud environments, the complexity of securing distributed infrastructures grows. In 2025, cloud security will need to address increasingly sophisticated threats with innovative approaches to ensure resilience and trust.

Emerging threats in cloud security:

  1. Supply chain attacks in the cloud: Threat actors are targeting vulnerabilities in cloud networks, including third-party integrations and APIs. These attacks can have wide-spanning impacts, jeopardizing data security and possibly even compromising multiple organizations at once. As a result, robust detection and response capabilities are essential to identify and neutralize these attacks before they escalate.
  2. Advanced misconfiguration exploits: Misconfigurations remain a leading cause of cloud security breaches. Attackers are exploiting these vulnerabilities across dynamic infrastructures, underscoring the need for tools that provide continuous compliance validation in the future of cloud computing.
  3. Credential theft with evolving Tactics, Techniques, and Procedures (TTPs): While credential theft can result from phishing attacks, it can also happen through other means like malware, lateral movement, data breaches, weak and reused passwords, and social engineering. Adversarial innovation in carrying out these attacks requires security teams to use proactive defense strategies.
  4. Insider threats and privilege misuse: Inadequate monitoring of Identity and Access Management (IAM) in cloud security increases the risk of insider threats. The adoption of zero-trust architectures is key to mitigating these risks.
  5. Threats exploiting dynamic cloud scaling: Attackers take advantage of the dynamic nature of cloud computing, leveraging ephemeral workloads and autoscaling features to evade detection. This makes adaptive and AI-driven detection and response critical because it can more easily parse behavioral data that would take human security teams longer to investigate.

Where the industry is headed

In 2025, cloud infrastructures will become even more distributed and interconnected. Multi-cloud and hybrid models will dominate, so organizations will have to optimize workloads across platforms. At the same time, the growing adoption of edge computing and containerized applications will decentralize operations further. These trends demand security solutions that are agile, unified, and capable of adapting to rapid changes in cloud environments.

Emerging challenges in securing cloud environments

The transition to highly distributed and dynamic cloud ecosystems introduces the following key challenges:

  1. Limited visibility
    As organizations adopt multiple platforms and services, gaining a unified view of cloud architectures becomes increasingly difficult. This lack of visibility makes it unclear where sensitive data resides, which identities can access it and how, and if there are potential vulnerabilities in configurations and API infrastructure. Without end-to-end monitoring, detecting and mitigating threats in real time becomes nearly impossible.
  2. Complex environments
    The blend of public, private, and hybrid clouds, coupled with diverse service types (SaaS, PaaS, IaaS), creates a security landscape rife with configuration challenges. Each layer adds complexity, increasing the risk of misconfigurations, inconsistent policy enforcement, and gaps in defenses – all of which attackers may exploit.
  3. Dynamic nature of cloud
    Cloud infrastructures are designed to scale resources on demand, but this fluidity poses significant challenges to threat detection and incident response. Changes in configurations, ephemeral workloads, and fluctuating access points mean that on-prem network security mindsets cannot be applied to cloud security and many traditional cloud security approaches still fall short in addressing threats in real time.

Looking forward: Protecting the cloud in 2025 and beyond

Addressing these challenges requires innovation in visibility tools, AI-driven threat detection, and policy automation. The future of cloud security hinges on solutions that adapt to complexity and scale, ensuring organizations can securely navigate the growing demands of cloud-first operations.

Unsupervised Machine Learning (ML) enhances cloud security

Unlike supervised ML, which relies on labeled datasets, unsupervised ML identifies patterns and deviations in data without predefined rules, making it particularly effective in dynamic and unpredictable environments like the cloud. By analyzing the baseline behavior in cloud environments, such as typical user activity, network traffic, and resource utilization, unsupervised ML and supporting models can identify behavioral deviations linked to suspicious activity like unusual login times, irregular API calls, or unexpected data transfers, therefore flagging them as potential threats.

Learn more about how multi-layered ML improves real-time cloud detection and response in the data sheet “AI enhances cloud security.

Agent vs. Agentless deployment

The future of cloud security is increasingly focused on combining agent-based and agentless solutions to address the complexities of hybrid and multi-cloud environments.

This integrated approach enables organizations to align security measures with the specific risks and operational needs of their assets, ensuring comprehensive protection.

Agent-based systems provide deep monitoring and active threat mitigation, making them ideal for high-security environments like financial services and healthcare, where compliance and sensitive data require stringent safeguards.

Meanwhile, agentless systems offer broad visibility and scalability, seamlessly covering dynamic cloud resources without the need for extensive deployment efforts.

Together, a combination of these approaches ensures that all parts of the cloud environment are protected according to their unique risk profiles and functional requirements.

The growing adoption of this strategy highlights a shift toward adaptive, scalable, and efficient security solutions, reflecting the priorities of a rapidly evolving cloud landscape.

To learn more about how these technologies are reshaping cloud defenses, read the blog “Agent vs. Agentless Cloud Security: Why Deployment Methods Matter.”

Shifting responsibilities: security teams must get more comfortable with cloud mindsets

Traditionally, many organizations left cloud security to dedicated cloud teams. However, it is becoming more and more common for security teams to take on the responsibilities of securing the cloud. This is also true of organizations undergoing cloud migration and spinning up cloud infrastructure for the first time.

Notably, the usual approaches to other types of cybersecurity can’t be applied the exact same way to the cloud. With the inherent dynamism and flexibility of the cloud, the necessary security mindset differs greatly from those for the network or datacenters, with which security teams may be more familiar.

For example, IAM is both critical and distinct to cloud computing, and the associated policies, rules, and downstream impacts require intentional care. IAM rules not only govern people, but also non-human entities like service accounts, API keys, and OAuth tokens. These considerations are unique to cloud security, and established teams may need to learn new skills to reduce security gaps in the cloud.

Discover more about the teams that impact modern cloud security in the blog "Cloud Security Evolution: Why Security Teams are Taking the Lead."

The importance of visibility: The future of network security in the cloud

As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations. Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks.

Shared visibility across both on-premises and cloud environments unifies SecOps and DevOps teams, enabling them to generate actionable insights and develop a cohesive approach. This alignment helps confidently mitigate risks across the cloud and network while streamlining workflows and accelerating the cloud migration journey—all without compromising security or operational continuity.

Read more about the importance of end-to-end visibility in the modern threat landscape in the blog "Breaking Silos: Why Unified Security is Critical in Hybrid World."

Cloud security ciso's guide screenshot

Ready to transform your cloud security approach? Download the CISO's Guide to Cloud Security now!

References:

[1] Gartner, June 5, 2024, “The Expanding Enterprise Investment in Cloud Security,” Available at: https://www.gartner.com/en/newsroom/press-releases/2024-06-05-the-expanding-enterprise-investment-in-cloud-security

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security

More in this series

No items found.

Blog

/

Email

/

July 21, 2025

Global Telecom Provider: Powering and Protecting the World's Data Giants

Default blog imageDefault blog image

This global leader plays a critical role in keeping the world connected. The company works with some of the largest and most influential public and private organizations in the world to enable ultra-fast data transmission.

Safeguarding the systems that keep the world connected

Standing at the forefront of global connectivity, this industry leader designs and manages large-scale communications systems that power the world’s most data-intensive enterprises – including social media giants, hyperscale cloud providers, and major data center operators. Given the scale, confidentiality, and sensitivity of the systems and data it helps transport, the company faces complex cybersecurity challenges.

Protecting sensitive customer data

Most of the organization’s projects are custom-designed and highly proprietary, making data privacy and Intellectual Property (IP) protection critical to maintaining trust and confidentiality with customers. In an industry where every competitor knows the landscape intimately, any loss of data could cause significant damage.

International security implications

The company faces a broad range of advanced cyber threats – from corporate espionage and supply chain risks to cyber-physical attacks on critical infrastructure. Its international footprint adds complexity, including cross-border regulatory compliance. A successful attack could disrupt business, compromise IP, or trigger wider consequences like disruptions to international data transfers and other critical services.

The global leader works closely with communities to anticipate threats that could impact the global communications network at large.

In this environment, cybersecurity is a foundation for international trust,” said the organization’s CISO.

Building a resilient cybersecurity strategy from the ground up

The CISO had the rare opportunity to build the IT and cybersecurity infrastructure from scratch. "Initially, we bought what everyone else buys,” referencing the traditional mix of firewalls, routers, and antivirus tools. “But I knew we needed to do more.”

Self-Learning AI – “the missing piece”

With solid perimeter defenses in place, the security team sought deeper protection inside the network. Darktrace’s Self-Learning AI stood out. “Unlike other solutions, Darktrace’s AI looks beyond known threat signatures, learning what’s normal for our environment and flagging what’s not. That was the missing piece – something that could help us even when everything else failed.”

A solution and partnership that delivered

The CISO said he appreciated the ability to observe Darktrace in action before full deployment, noting that the Darktrace team was there every step of the way, providing guidance and expertise to ensure he got the most out of his investment.

Partnership was especially valuable given the company’s explosive 400% growth over the last six years. As resources were stretched and priorities shifted, “Darktrace remained patient and responsive. We’re slow and methodical, but the Darktrace support team was phenomenal, never losing momentum and earning our trust.”

A unified cybersecurity ecosystem

Today, the global leader is using the Darktrace ActiveAI Security Platform™ as a core part of its layered defense strategy, including:

The CISO appreciates how, as a unified cybersecurity platform, Darktrace has an intuitive user interface, which makes it easier for his team to investigate alerts visually, even without deep technical expertise.

Advancing defenses while impacting the bottom line

A 24/7 “safety net”

The fact that this company has never been hacked is the clearest proof it made the right decision with Darktrace, said the CISO. Initially rolled out in Human Confirmation Mode, meaning it would not take autonomous action without explicit approval from the security team, Darktrace immediately uncovered threats and anomalies that other tools had missed.

Darktrace acts as a must-have safety net—ready to step in when other tools fall short,” said the CISO.

From monitoring internal behavior and identifying unusual attack patterns, to autonomously neutralizing threats after hours, the platform provides peace of mind in a high-stakes industry. “Darktrace is my dark horse – the thing I have in my back pocket if everything else fails. It’s here to save the day, save my company, and maybe even save my career.”

Autonomous capabilities free up time for skilled analysts

Darktrace’s AI-powered detection and response capabilities are deeply embedded in the team’s day-to-day operations, autonomously investigating and responding to the majority of potential threats. Cyber AI Analyst conducted a total of 2,776 total investigations within three months, averaging just 12 minutes to autonomously investigate an incident. Of those 2,776 investigations, Darktrace resolved 2,671 (96%) autonomously and escalated only 105 (4%) to analysts. Darktrace has dramatically reduced alert fatigue and freed up analysts to focus on what really matters, saving the security team 486 analyst hours on investigations within a 20-day period.

From noise to actionable insight

Darktrace delivers meaningful data and meaningful alerts. “If Darktrace escalates an incident, we drop everything and work on that. We trust in Darktrace.” When analysts do need to investigate an incident, Darktrace’s forensic logs and guided remediation suggestions have slashed the time analysts spend on investigations by four to five times.

Stronger security. Lower cost.

The CISO says, “Darktrace is a money-saver for our organization, making continued investments an easy sell to the CEO and the board.”  When he found himself down a resource after a member of the security team left the organization, the CISO turned to Darktrace Managed Threat Detection and Response services for 24/7 expert support. “It was a no brainer. We got better coverage, higher skill levels, and around-the-clock support – all for less than what we would pay to employ a single analyst.”

Scaling securely into the future

Securing networks in motion  

The organization is preparing to scale both its operations and security posture across existing distributed, mobile and deployable communications networks that historically have been disconnected. Some of these networks are in constant motion and operating in some of the world’s most volatile regions. “Darktrace will act as an autonomous defender, monitoring for anomalous behavior and intervening, when necessary, especially during those dangerous times when an asset ‘goes dark’ and becomes disconnected from the broader network,” said the CISO.

Applying AI strategically

As the organization continues to evaluate where and how to apply AI, its emphasis will be on technologies that can act independently to contain threats – especially in environments where human response may be delayed. “It’s about using the right kind of AI for the right challenge. That’s why we’re investing in Darktrace, with tools that can adapt and learn even in isolation and provide real-time protection wherever we operate.”

Continue reading
About the author
The Darktrace Community

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing
Your data. Our AI.
Elevate your network security with Darktrace AI