Blog
/
Email
/
March 29, 2023

Email Security & Future Innovations: Educating Employees

As online attackers change to targeted and sophisticated attacks, Darktrace stresses the importance of protection and utilizing steady verification codes.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Mar 2023

In an escalating threat landscape with email as the primary target, IT teams need to move far beyond traditional methods of email security that haven’t evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. By design, they are permanently playing catch up to continually innovating attackers, taking an average of 13 days to recognize new attacks[1]

Phishing attacks are getting more targeted and sophisticated as attackers innovate in two key areas: delivery tactics, and social engineering. On the malware delivery side, attackers are increasingly ‘piggybacking’ off the legitimate infrastructure and reputations of services like SharePoint and OneDrive, as well as legitimate email accounts, to evade security tools. 

To evade the human on the other end of the email, attackers are tapping into new social engineering tactics, exploiting fear, uncertainty, and doubt (FUD) and evoking a sense of urgency as ever, but now have tools at their disposal to enable tailored and personalized social engineering at scale. 

With the help of tools such as ChatGPT, threat actors can leverage AI technologies to impersonate trusted organizations and contacts – including damaging business email compromises, realistic spear phishing, spoofing, and social engineering. In fact, Darktrace found that the average linguistic complexity of phishing emails has jumped by 17% since the release of ChatGPT.  

This is just one example of accelerating attack sophistication – lowering the barrier to entry and improving outcomes for attackers. It forms part of a wider trend of the attack landscape moving from low-sophistication, low-impact, and generic phishing tactics - a 'spray and pray' approach - to more targeted, sophisticated, and higher impact attacks that fall outside of the typical detection remit for any tool relying on rules and signatures. Generative AI and other technologies in the attackers' toolkit will soon enable the launch of these attacks at scale, and only being able to catch known threats that have been seen before will no longer be enough.

Figure 1: The progression of attacks and relative coverage of email security tools

In an escalating threat landscape with email as the primary target, the vast majority of email security tools haven't evolved fast enough – they’re trained on historical attack data, so only catch what they’ve seen before. They look to the past to try and predict the next attack, and are designed to catch today’s attacks tomorrow.

Organizations are increasingly moving towards AI systems, but not all AI is the same, and the application of that AI is crucial. IT and security teams need to move towards email security that is context-aware and leverages AI for deep behavioral analysis. And it’s a proven approach, successfully catching attacks that slip by other tools across thousands of organizations. And email security today needs to be more about just protecting the inbox. It needs to address not just malicious emails, but the full 360-degree view of a user across their email messages and accounts, as well as extended coverage where email bleeds into collaboration tools/SaaS. For many organizations, the question is not if they should upgrade their email security, but when – how much longer can they risk relying on email security that’s stuck looking to the past?  

The Email Security Industry: Playing Catch-Up

Gateways and ICES (Integrated Cloud Email Security) providers have something in common: they look to past attacks in order to try to predict the future. They often rely on previous threat intelligence and on assembling ‘deny-lists’ of known bad elements of emails already identified as malicious – these tools fail to meet the reality of the contemporary threat landscape. Some of these tools attempt to use AI to improve this flawed approach, looking not only for direct matches, but using "data augmentation" to try and find similar-looking emails. But this approach is still inherently blind to novel threats. 

These tools tend to be resource-intensive, requiring constant policy maintenance combined with the hand-to-hand combat of releasing held-but-legitimate emails and holding back malicious phishing emails. This burden of manually releasing individual emails typically falls on security teams, teams that are frequently small with multiple areas of responsibility. The solution is to deploy technology that autonomously stops the bad while allowing the good through, and adapts to changes in the organization – technology that actually fits the definition of ‘set and forget’.  

Becoming behavioral and context-aware  

There is a seismic shift underway in the industry, from “secure” email gateways to intelligent AI-driven thinking. The right approach is to understand the behaviors of end users – how each person uses their inbox and what constitutes ‘normal’ for each user – in order to detect what’s not normal. It makes use of context – how and when people communicate, and with who – to spot the unusual and to flag to the user when something doesn’t look quite right – and why. Basically, a system that understands you. Not past attacks.  

Darktrace has developed a fundamentally different approach to AI, one that doesn’t learn what’s dangerous from historical data but from a deep continuous understanding of each organization and their users. Only a complex understanding of the normal day-to-day behavior of each employee can accurately determine whether or not an email actually belongs in that recipient’s inbox. 

Whether it’s phishing, ransomware, invoice fraud, executive impersonation, or a novel technique, leveraging AI for behavioral analysis allows for faster decision-making – it doesn’t need to wait for a Patient Zero to contain a new attack because it can stop malicious threats on first encounter. This increased confidence in detection allows for more a precise response – targeted action to remove only the riskiest parts of an email, rather than taking a broad blanket response out of caution – in order to reduce risk with minimal disruption to the business. 

Returning to our attack spectrum, as the attack landscape moves increasingly towards highly sophisticated attacks that use novel or seemingly legitimate infrastructure to deliver malware and induce victims, it has never been more important to detect and issue an appropriate response to these high-impact and targeted attacks. 

Fig 2: How Darktrace combined with native email security to cover the full spectrum of attacks

Understanding you and a 360° view of the end user  

We know that modern email security isn’t limited to the inbox alone – it has to encompass a full understanding of a user’s normal behavior across email and beyond. Traditional email tools are focused solely on inbound email as the point of breach, which fails to protect against the potentially catastrophic damage caused by a successful email attack once an account has been compromised.    

Fig 3: A 360° understanding of a user reveals their digital touchpoints beyond Microsoft

In order to have complete context around what is normal for a user, it’s crucial to understand their activity within Microsoft 365, Google Workspace, Salesforce, Dropbox, and even their device on the network. Monitoring devices (as well as inboxes) for symptoms of infection is crucial to determining whether or not an email has been malicious, and if similar emails need to be withheld in the future. Combining with data from cloud apps enables a more holistic view of identity-based attacks. 

Understanding a user in the context of the whole organization – which also means network, cloud, and endpoint data – brings additional context to light to improve decision making, and connecting email security with external data on the attack surface can help proactively find malicious domains, so that defenses can be hardened before an attack is even launched.

Educating and Engaging Your Employees

Ultimately, it’s employees who interact with any given email. If organizations can successfully empower this user base, they will end up with a smarter workforce, fewer successful attacks, and a security team with more time on their hands for better, strategic work. 

The tools that succeed best will be those that can leverage AI to help employees become more security-conscious. While some emails are evidently malicious and should never enter an employee’s inbox, there is a significant grey area of emails that have potentially risky elements. The majority of security tools will either withhold these emails completely – even though they might be business critical – or let them through scot-free. But what if these grey-area emails could in fact be used as training opportunities?    

As opposed to phishing simulation vendors, behavioral AI can improve security awareness holistically throughout organizations by training users with a light touch via their own inboxes – bringing the end user into the loop to harden defenses.  

The new frontier of email security fights AI with AI, and organizations who lag behind might end up learning the hard way. Read on for our blog series about how these technologies can transform the employee experience, dynamize deployment, augment security teams and form part of an integrated defensive loop.    

[1] 13 days is the mean average of phishing payloads active in the wild between the response of Darktrace/Email compared to the earliest of 16 independent feeds submitted by other email security technologies.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

Blog

/

Compliance

/

August 13, 2025

ISO/IEC 42001: 2023: A milestone in AI standards at Darktrace  

ISO/IEC 42001 complianceDefault blog imageDefault blog image

Darktrace announces ISO/IEC 42001 accreditation

Darktrace is thrilled to announce that we are one of the first cybersecurity companies to achieve ISO/IEC 42001 accreditation for the responsible management of AI systems. This isn’t just a milestone for us, it’s a sign of where the AI industry is headed. ISO/IEC 42001 is quickly emerging as the global benchmark for separating vendors who truly innovate with AI from those who simply market it.

For customers, it’s more than a badge, it’s assurance that a vendor’s AI is built responsibly, governed with rigor, and backed by the expertise of real AI teams, keeping your data secure while driving meaningful innovation.

This is a critical milestone for Darktrace as we continue to strengthen our offering, mature our governance and compliance frameworks for AI management, expand our research and development capabilities, and further our commitment to the development of responsible AI.  

It cements our commitment to providing secure, trustworthy and proactive cybersecurity solutions that our customers can rely on and complements our existing compliance framework, consisting of certifications for:

  • ISO/IEC 27001:2022 – Information Security Management System
  • ISO/IEC 27018:2019 – Protection of Personally Identifiable Information in Public Cloud Environments
  • Cyber Essentials – A UK Government-backed certification scheme for cybersecurity baselines

What is ISO/IEC 42001:2023?

In response to the unique challenges that AI poses, the International Organization for Standardization (ISO) introduced the ISO/IEC 42001:2023 framework in December 2023 to help organizations providing or utilizing AI-based products or services to demonstrate responsible development and use of AI systems. To achieve the accreditation, organizations are required to establish, implement, maintain, and continually improve their Artificial Intelligence Management System (AIMS).

ISO/IEC 42001:2023 is the first of its kind, providing valuable guidance for this rapidly changing field of technology. It addresses the unique ethical and technical challenges AI poses by setting out a structured way to manage risks such as transparency, accuracy and misuse without losing opportunities. By design, it balances the benefits of innovation against the necessity of a proper governance structure.

Being certified means the organization has met the requirements of the ISO/IEC 42001 standard, is conforming to all applicable regulatory and legislative requirements, and has implemented thorough processes to address AI risks and opportunities.

What is the  ISO/IEC 42001:2023 accreditation process?

Darktrace partnered with BSI over an 11-month period to undertake the accreditation. The process involved developing and implementing a comprehensive AI management system that builds on our existing certified frameworks, addresses the risks and opportunities of using and developing cutting-edge AI systems, underpins our AI objectives and policies, and meets our regulatory and legal compliance requirements.

The AI Management System, which takes in our people, processes, and products, was extensively audited by BSI against the requirements of the standard, covering all aspects spanning the design of our AI, use of AI within the organization, and our competencies, resources and HR processes. It is an in-depth process that we’re thrilled to have undertaken, making us one of the first in our industry to achieve certification for a globally recognized AI system.

The scope of Darktrace’s certification is particularly wide due to our unique Self-Learning approach to AI for cybersecurity, which uses multi-layered AI systems consisting of varied AI techniques to address distinct cybersecurity tasks. The certification encompasses production and provision of AI systems based on anomaly detection, clustering, classifiers, regressors, neural networks, proprietary and third-party large language models for proactive, detection, response and recovery cybersecurity applications. Darktrace additionally elected to adopt all Annex A controls present in the ISO/IEC 42001 standard.

What are the benefits of an AI Management System?

While AI is not a new or novel concept, the AI industry has accelerated at an unprecedented rate in the past few years, increasing operational efficiency, driving innovation, and automating cumbersome processes in the workplace.

At the same time, the data privacy, security and bias risks created by rapid innovation in AI have been well documented.

Thus, an AI Management System enables organizations to confidently establish and adhere to governance in a way that conforms to best practice, promotes adherence, and is in line with current and emerging regulatory standards.

Not only is this vital in a unique and rapidly evolving field like AI, it additionally helps organization’s balance the drive for innovation with the risks the technology can present, helping to get the best out of their AI development and usage.

What are the key components of ISO/IEC 42001?

The Standard puts an emphasis on responsible AI development and use, requiring organizations to:

  • Establish and implement an AI Management System
  • Commit to the responsible development of AI against established, measurable objectives
  • Have in place a process to manage, monitor and adapt to risks in an effective manner
  • Commit to continuous improvement of their AI Management System

The AI Standard is similar in composition to other ISO standards, such as ISO/IEC 27001:2022, which many organizations may already be familiar with. Further information as to the structure of ISO/IEC 42001 can be found in Annex A.

What it means for Darktrace’s customers

Our certification against ISO/IEC 42001 demonstrates Darktrace’s commitment to delivering industry-leading Self-Learning AI in the name of cybersecurity resilience. Our stakeholders, customers and partners can be confident that Darktrace is responsibly, ethically and securely developing its AI systems, and is managing the use of AI in our day-to-day operations in a compliant, secure and ethical manner. It means:

  • You can trust our AI: We can demonstrate our AI is developed responsibly, in a transparent manner and in accordance with ethical rules. For more information and to learn about Darktrace's responsible AI in cybersecurity approach, please see here.
  • Our products are backed by innovation and integrity: Darktrace drives cutting edge AI innovation with ethical governance and customer trust at its core.
  • You are partnering with an organization which stays ahead of regulatory changes: In an evolving AI landscape, partnering with Darktrace helps you to stay prepared for emerging compliance and regulatory demands in your supply chain.

Achieving ISO/IEC 42001:2023 certification is not just a checkpoint for us. It represents our unwavering commitment to setting a higher standard for AI in cybersecurity. It reaffirms our leadership in building and implementing responsible AI and underscores our mission to continuously innovate and lead the way in the industry.

Why ISO/IEC 42001 matters for every AI vendor you trust

In a market where “AI” can mean anything from a true, production-grade system to a thin marketing layer, ISO/IEC 42001 acts as a critical differentiator. Vendors who have earned this certification aren’t just claiming they build responsible AI, they’ve proven it through an independent, rigorous audit of how they design, deploy, and manage their systems.

For you as a customer, that means:

You know their AI is real: Certified vendors have dedicated, skilled AI teams building and maintaining systems that meet measurable standards, not just repackaging off-the-shelf tools with an “AI” label.

Your data is safeguarded: Compliance with ISO/IEC 42001 includes stringent governance over data use, bias, transparency, and risk management.

You’re partnering with innovators: The certification process encourages continuous improvement, meaning your vendor is actively advancing AI capabilities while keeping ethics and security in focus.

In short, ISO/IEC 42001 is quickly becoming the global badge of credible AI development. If your vendor can’t show it, it’s worth asking how they manage AI risk, whether their governance is mature enough, and how they ensure innovation doesn’t outpace accountability.

Annex A: The Structure of ISO/IEC 42001

ISO/IEC 42001 has requirements for which seven adherence is required for an organization seeking to obtain or maintain its certification:

  • Context of the organization – organizations need to demonstrate an understanding of the internal and external factors influencing the organization’s AI Management System.
  • Leadership – senior leadership teams need to be committed to implementing AI governance within their organizations, providing direction and support across all aspects AI Management System lifecycle.
  • Planning – organizations need to put meaningful and manageable processes in place to identify risks and opportunities related to the AI Management System to achieve responsible AI objectives and mitigate identified risks.
  • Support – demonstrating a commitment to provisioning of adequate resources, information, competencies, awareness and communication for the AI Management System is a must to ensure that proper oversight and management of the system and its risks can be achieved.
  • Operation – establishing processes necessary to support the organization’s AI system development and usage, in conformance with the organization’s AI policy, objectives and requirements of the standard. Correcting the course of any deviations within good time is paramount.
  • Performance evaluation – the organization must be able to demonstrate that it has the capability and willingness to regularly monitor and evaluate the performance of the AI Management System effectively, including actioning any corrections and introducing new processes where relevant.
  • Improvement – relying on an existing process will not be sufficient to ensure compliance with the AI Standard. Organizations must commit to monitoring of existing systems and processes to ensure that the AI Management System is continually enhanced and improved.

To assist organizations in seeking the above, four annexes are included within the AI Standard’s rubric, which outline the objectives and measures an organization may wish to implement to address risks related to the design and operation of their AI Management System through the introduction of normative controls. Whilst they are not prescriptive, Darktrace has implemented the requirements of these Annexes to enable it to appropriately demonstrate the effectiveness of its AI Management System. We have placed a heavy emphasis on Annex A which contains these normative controls which we, and other organizations seeking to achieve certification, can align with to address the objectives and measures, such as:

  • Enforcement of policies related to AI.
  • Setting responsibilities within the organization, and expectation of roles and responsibilities.
  • Creating processes and guidelines for escalating and handling AI concerns.
  • Making resources for AI systems available to users.
  • Assessing impacts of AI systems internally and externally.
  • Implementing processes across the entire AI system life cycle.
  • Understanding treatment of Data for AI systems.
  • Defining what information is, and should be available, for AI systems.
  • Considering and defining use cases for the AI systems.
  • Considering the impact of the AI System on third-party and customer relationships.

The remaining annexes provide guidance on implementing Annex A’s controls, objectives and primary risk sources of AI implementation, and considering how the AI Management System can be used across domains or sectors responsibly.

[related-resource]

Continue reading
About the author
William Booth
Director of Cybersecurity Compliance

Blog

/

Cloud

/

August 12, 2025

Minimizing Permissions for Cloud Forensics: A Practical Guide to Tightening Access in the Cloud

Cloud permissions cloud forensicsDefault blog imageDefault blog image

Most cloud environments are over-permissioned and under-prepared for incident response.

Security teams need access to logs, snapshots, and configuration data to understand how an attack unfolded, but giving blanket access opens the door to insider threats, misconfigurations, and lateral movement.

So, how do you enable forensics without compromising your security posture?

The dilemma: balancing access and security

There is a tension between two crucial aspects of cloud security that create a challenge for cloud forensics.

One aspect is the need for Security Operations Center (SOC) and Incident Response (IR) teams to access comprehensive data for investigating and resolving security incidents.

The other conflicting aspect is the principle of least privilege and minimal manual access advocated by cloud security best practices.

This conflict is particularly pronounced in modern cloud environments, where traditional physical access controls no longer apply, and infrastructure-as-code and containerization have transformed the landscape.

There are several common but less-than-ideal approaches to this challenge:

  • Accepting limited data access, potentially leaving incidents unresolved
  • Granting root-level access during major incidents, risking further compromise

Relying on cloud or DevOps teams to retrieve data, causing delays and potential miscommunication

[related-resource]

Challenges in container forensics

Containers present unique challenges for forensic investigations due to their ephemeral and dynamic nature. The orchestration and management of containers, whether on private clusters or using services like AWS Elastic Kubernetes Service (EKS), introduce complexities in capturing and analyzing forensic data.

To effectively investigate containers, it's often necessary to acquire the underlying volume of a node or perform memory captures. However, these actions require specific Identity and Access Management (IAM) and network access to the node, as well as familiarity with the container environment, which may not always be straightforward.

An alternative method of collection in containerized environments is to utilize automated tools to collect this evidence. Since they can detect malicious activity and collect relevant data without needing human input, they can act immediately, securing evidence that might be lost by the time a human analyst is available to collect it manually.

Additionally, automation can help significantly with access and permissions. Instead of analysts needing the correct permissions for the account, service, and node, as well as deep knowledge of the container service itself, for any container from which they wish to collect logs. They can instead collect them, and have them all presented in one place, at the click of a button.

A better approach: practical strategies for cloud forensics

It's crucial to implement strategies that strike a balance between necessary access and stringent security controls.

Here are several key approaches:

1. Dedicated cloud forensics accounts

Establishing a separate cloud account or subscription specifically for forensic activities is foundational. This approach isolates forensic activities from regular operations, preventing potential contamination from compromised environments. Dedicated accounts also enable tighter control over access policies, ensuring that forensic operations do not inadvertently expose sensitive data to unauthorized users.

A separate account allows for:

  • Isolation: The forensic investigation environment is isolated from potentially compromised environments, reducing the risk of cross-contamination.
  • Tighter access controls: Policies and controls can be more strictly enforced in a dedicated account, reducing the likelihood of unauthorized access.
  • Simplified governance: A clear and simplified chain of custody for digital evidence is easier to maintain, ensuring that forensic activities meet legal and regulatory requirements.

For more specifics:

2. Cross-account roles with least privilege

Using cross-account IAM roles, the forensics account can access other accounts, but only with permissions that are strictly necessary for the investigation. This ensures that the principle of least privilege is upheld, reducing the risk of unauthorized access or data exposure during the forensic process.

3. Temporary credentials for just-in-time access

Leveraging temporary credentials, such as AWS STS tokens, allows for just-in-time access during an investigation. These credentials are short-lived and scoped to specific resources, ensuring that access is granted only when absolutely necessary and is automatically revoked after the investigation is completed. This reduces the window of opportunity for potential attackers to exploit elevated permissions.

For AWS, you can use commands such as:

aws sts get-session-token --duration-seconds 43200

aws sts assume-role --role-arn role-to-assume --role-session-name "sts-session-1" --duration-seconds 43200

For Azure, you can use commands such as:

az ad app credential reset --id <appId> --password <sp_password> --end-date 2024-01-01

For more details for Google Cloud environments, see “Create short-lived credentials for a service account” and the request.time parameter.

4. Tag-based access control

Pre-deploying access control based on resource tags is another effective strategy. By tagging resources with identifiers like "Forensics," access can be dynamically granted only to those resources that are relevant to the investigation. This targeted approach minimizes the risk of overexposure and ensures that forensic teams can quickly and efficiently access the data they need.

For example, in AWS:

Condition: StringLike: aws:ResourceTag/Name: ForensicsEnabled

Condition: StringLike: ssm:resourceTag/SSMEnabled: True

For example, in Azure:

"Condition": "StringLike(Resource[Microsoft.Resources/tags.example_key], '*')"

For example, in Google Cloud:

expression: > resource.matchTag('tagKeys/ForensicsEnabled', '*')

Tighten access, enhance security

The shift to cloud environments demands a rethinking of how we approach forensic investigations. By implementing strategies like dedicated cloud forensic accounts, cross-account roles, temporary credentials, and tag-based access control, organizations can strike the right balance between access and security. These practices not only enhance the effectiveness of forensic investigations but also ensure that access is tightly controlled, reducing the risk of exacerbating an incident or compromising the investigation.

Find the right tools for your cloud security

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

In addition to having these forensics capabilities, Darktrace / CLOUD is a real-time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI