Blog
/
/
September 23, 2020

Detecting OT Threats: ICS Attack at International Airport

Learn how Darktrace's OT Threat Detection technology identified a sophisticated ICS attack on an international airport. Read more on Darktrace's blog.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Sep 2020

As Industrial Control Systems (ICS) and traditional IT networks converge, the number of cyber-attacks that start in the corporate network before spreading to operational technology has increased dramatically in the last 12 months. From North Korean hackers targeting a nuclear power plant in India to ransomware shutting down operations at a US gas facility, and across Honda’s manufacturing sites, 2020 has been the year OT attacks have become mainstream.

Darktrace recently detected a simulation of a state-of-the-art attack at an international airport, identifying ICS reconnaissance, lateral movement, vulnerability scanning and protocol fuzzing – a technique in which the attacker sends nonsensical commands over an ICS communication channel in order to confuse the target device, causing it to fail or reboot.

Darktrace’s Industrial Immune System detected every stage of the sophisticated attack, using AI-powered anomaly detection to identify ICS attack vectors without a list of known exploits, company assets, or firmware versions. The attacker leveraged tools at every stage of the ICS kill chain, including ICS-specific attack techniques.

Any unusual attempts to read or reprogram single coils, objects, or other data blocks were detected by Cyber AI, and Darktrace’s Cyber AI Analyst also automatically identified the activity and created summary reports detailing the key actions taken.

The attack spanned multiple days and targeted the Building Management System (BMS) and the Baggage Reclaim network, with attackers utilizing two common ICS protocols (BacNet and S7Comm) and leveraging legitimate tools (such as ICS reprogramming commands and connections through SMB service pipes) to evade traditional, signature-based security tools.

Attack details

Figure 1: Timeline of the attack

In the first stage of the attack, a new device was introduced to the network, using ARP spoofing to evade detection from traditional security tools. At 11.40am, the attacker scanned a target device and attempted to bruteforce open services. Once the target device had been hijacked, the attacker then sought to establish an external connection to the Internet. External connections should not be possible in ICS networks, but attackers often seek to bypass firewalls and network segregation rules in order to create a command and control (C2) channel.

Figure 2: Darktrace Threat Tray 15 minutes after the pentest commenced. High level model breaches have already alerted the analyst team to the attack device.

The hijacked device then began performing ICS reconnaissance using Discover and Read commands. Darktrace identified new objects and data blocks being targeted as part of this reconnaissance, and detected ICS devices targeted with unusual BacNet and Siemens S7Comm protocol commands.

Figure 3: Model alerts associated with ICS reconnaissance over BacNet. Machine learning at the ICS command level detected new and unusual BacNet objects being targeted by the attacker.

The attacker enumerated through multiple ICS devices in order to perform lateral movement throughout the ICS system. Once they had learned device settings and configurations, they used ICS Reprogram and Write commands to reconfigure machines. The attacker attempted to use known vulnerabilities to exploit the target devices, such as the use of SMB, SMBv1, HTTP, RDP, and ICS protocol fuzzing.

Figure 4: Visualization of the device enumeration performed by the attacker against multiple ICS controllers. The attacker used ICS Discover commands as part of the initial reconnaissance.

The attacker took deliberate actions to evade the airport’s cyber security stack, including making connections using ICS protocols commonly used on the network to devices which commonly use those protocols. While legacy security tools failed to pick up on this activity, Darktrace’s deep packet inspection was able to identify unusual commands used by the attacker within those ‘normal’ connections.

The attacker used ARP spoofing to slow any investigation using asset management-based security tools – including two other solutions being trialed by the airport at the time of the attack. They also used multiple devices throughout the intrusion to throw defense teams off the scent.

Darktrace’s AI technology also launched an automated investigation into the incident. The Cyber AI Analyst identified all of the attack devices and produced summary reports for each, showcasing its ability to not only save crucial time for security teams, but bridge the skills gap between IT teams and ICS engineers.

Figure 5: The Cyber AI Analyst threat tray at the end of day 1. Both devices used by the attacker have been identified.

The Cyber AI Analyst immediately began investigating after the first model breach, and continued to stitch together disparate events across the network to produce a natural language summary of the incident, including recommendations for action.

Figure 6: AIA incident summary at the end of day 2, detailing the use of SMB exploits as part of the attack chain against one of the ICS devices.

Potential ramifications

Had the attack been allowed to continue, the attackers – potentially activist groups, terrorist organizations, and organized criminals – could have caused significant operational disruption to the airport. For example, the BMS is likely to manage temperature settings, the sprinkler system, fire alarms and fire exits, lighting, and doors in and out of secure access areas. Meddling with any one of these could cause severe disruption at an airport, with significant financial and reputational effects. Similarly, access to baggage reclaim networks could be used by criminals seeking to smuggle illegal goods or steal valuable cargo.

This simulation showcases the possibilities for an advanced cyber-criminal looking to compromise integrated IT and OT networks. The majority of leading ICS ‘security’ vendors are signature-based, and fail to pick up on novel techniques and utilization of common protocols to pursue malicious ends – this is why ICS attacks have continued to hit the headlines this year.

The incident showcases the extent of Cyber AI’s detections in a real-world ICS environment, and the level of detail Darktrace can provide following an attack. As Industrial Control Systems become increasingly integrated with the wider IT network, the importance of securing these critical systems is paramount. Darktrace provides a unified security umbrella with visibility and detection across the entire digital environment.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Learn more about the Industrial Immune System

Darktrace model detections:

  • ICS / Unusual ICS Commands
  • ICS / Multiple New Reprograms
  • ICS / Multiple New Discover Commands
  • ICS / Rare External from OT Device
  • ICS / Uncommon ICS Protocol Warning
  • ICS / Multiple Failed Connections to ICS Device
  • ICS / Anomalous IT to ICS Connection
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI