Blog
/
Identity
/
May 23, 2025

From Rockstar2FA to FlowerStorm: Investigating a Blooming Phishing-as-a-Service Platform

FlowerStorm is a phishing-as-a-service platform that leverages Adversary-in-the-Middle attacks to steal Microsoft 365 credentials and bypass MFA. Darktrace detected a SaaS compromise linked to FlowerStorm, identifying suspicious logins, password resets, and privilege escalation attempts, enabling early containment through AI-driven threat detection and response.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
man on computerDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
May 2025

What is FlowerStorm?

FlowerStorm is a Phishing-as-a-Service (PhaaS) platform believed to have gained traction following the decline of the former PhaaS platform Rockstar2FA. It employs Adversary-in-the-Middle (AitM) attacks to target Microsoft 365 credentials. After Rockstar2FA appeared to go dormant, similar PhaaS portals began to emerge under the name FlowerStorm. This naming is likely linked to the plant-themed terminology found in the HTML titles of its phishing pages, such as 'Sprout' and 'Blossom'. Given the abrupt disappearance of Rockstar2FA and the near-immediate rise of FlowerStorm, it is possible that the operators rebranded to reduce exposure [1].

External researchers identified several similarities between Rockstar2FA and FlowerStorm, suggesting a shared operational overlap. Both use fake login pages, typically spoofing Microsoft, to steal credentials and multi-factor authentication (MFA) tokens, with backend infrastructure hosted on .ru and .com domains. Their phishing kits use very similar HTML structures, including randomized comments, Cloudflare turnstile elements, and fake security prompts. Despite Rockstar2FA typically being known for using automotive themes in their HTML titles, while FlowerStorm shifted to a more botanical theme, the overall design remained consistent [1].

Despite these stylistic differences, both platforms use similar credential capture methods and support MFA bypass. Their domain registration patterns and synchronized activity spikes through late 2024 suggest shared tooling or coordination [1].

FlowerStorm, like Rockstar2FA, also uses their phishing portal to mimic legitimate login pages such as Microsoft 365 for the purpose of stealing credentials and MFA tokens while the portals are relying heavily on backend servers using top-level domains (TLDs) such as .ru, .moscow, and .com. Starting in June 2024, some of the phishing pages began utilizing Cloudflare services with domains such as pages[.]dev. Additionally, usage of the file “next.php” is used to communicate with their backend servers for exfiltration and data communication. FlowerStorm’s platform focuses on credential harvesting using fields such as email, pass, and session tracking tokens in addition to supporting email validation and MFA authentications via their backend systems [1].

Darktrace’s coverage of FlowerStorm Microsoft phishing

While multiple suspected instances of the FlowerStorm PhaaS platform were identified during Darktrace’s investigation, this blog will focus on a specific case from March 2025. Darktrace’s Threat Research team analyzed the affected customer environment and discovered that threat actors were accessing a Software-as-a-Service (SaaS) account from several rare external IP addresses and ASNs.

Around a week before the first indicators of FlowerStorm were observed, Darktrace detected anomalous logins via Microsoft Office 365 products, including Office365 Shell WCSS-Client and Microsoft PowerApps.  Although not confirmed in this instance, Microsoft PowerApps could potentially be leveraged by attackers to create phishing applications or exploit vulnerabilities in data connections [2].

Darktrace’s detection of the unusual SaaS credential use.
Figure 1: Darktrace’s detection of the unusual SaaS credential use.

Following this initial login, Darktrace observed subsequent login activity from the rare source IP, 69.49.230[.]198. Multiple open-source intelligence (OSINT) sources have since associated this IP with the FlowerStorm PhaaS operation [3][4].  Darktrace then observed the SaaS user resetting the password on the Core Directory of the Azure Active Directory using the user agent, O365AdminPortal.

Given FlowerStorm’s known use of AitM attacks targeting Microsoft 365 credentials, it seems highly likely that this activity represents an attacker who previously harvested credentials and is now attempting to escalate their privileges within the target network.

Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.
Figure 2: Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.

Notably, Darktrace’s Cyber AI Analyst also detected anomalies during a number of these login attempts, which is significant given FlowerStorm’s known capability to bypass MFA and steal session tokens.

Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Figure 3: Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.
Figure 4: Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.

In response to the suspicious SaaS activity, Darktrace recommended several Autonomous Response actions to contain the threat. These included blocking the user from making further connections to the unusual IP address 69.49.230[.]198 and disabling the user account to prevent any additional malicious activity. In this instance, Darktrace’s Autonomous Response was configured in Human Confirmation mode, requiring manual approval from the customer’s security team before any mitigative actions could be applied. Had the system been configured for full autonomous response, it would have immediately blocked the suspicious connections and disabled any users deviating from their expected behavior—significantly reducing the window of opportunity for attackers.

Figure 5: Autonomous Response Actions recommended on this account behavior; This would result in disabling the user and blocking further sign-in activity from the source IP.

Conclusion

The FlowerStorm platform, along with its predecessor, RockStar2FA is a PhaaS platform known to leverage AitM attacks to steal user credentials and bypass MFA, with threat actors adopting increasingly sophisticated toolkits and techniques to carry out their attacks.

In this incident observed within a Darktrace customer's SaaS environment, Darktrace detected suspicious login activity involving abnormal VPN usage from a previously unseen IP address, which was subsequently linked to the FlowerStorm PhaaS platform. The subsequent activity, specifically a password reset, was deemed highly suspicious and likely indicative of an attacker having obtained SaaS credentials through a prior credential harvesting attack.

Darktrace’s prompt detection of these SaaS anomalies and timely notifications from its Security Operations Centre (SOC) enabled the customer to mitigate and remediate the threat before attackers could escalate privileges and advance the attack, effectively shutting it down in its early stages.

Credit to Justin Torres (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst), Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Alert Detections

·      SaaS / Access / M365 High Risk Level Login

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login from Rare High-Risk Endpoint

·      SaaS / Compromise / SaaS Anomaly Following Anomalous Login

·      SaaS / Compromise / Unusual Login and Account Update

·      SaaS / Unusual Activity / Unusual MFA Auth and SaaS Activity

Cyber AI Analyst Coverage

·      Suspicious Access of Azure Active Directory  

·      Suspicious Access of Azure Active Directory  

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

69.49.230[.]198 – Source IP – Malicious IP Associated with FlowerStorm, Observed in Login Activity

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

References:

[1] https://news.sophos.com/en-us/2024/12/19/phishing-platform-rockstar-2fa-trips-and-flowerstorm-picks-up-the-pieces/

[2] https://learn.microsoft.com/en-us/security/operations/incident-response-playbook-compromised-malicious-app

[3] https://www.virustotal.com/gui/ip-address/69.49.230.198/community

[4] https://otx.alienvault.com/indicator/ip/69.49.230.198

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

OT

/

September 4, 2025

Rethinking Signature-Based Detection for Power Utility Cybersecurity

power utility cybersecurityDefault blog imageDefault blog image

Lessons learned from OT cyber attacks

Over the past decade, some of the most disruptive attacks on power utilities have shown the limits of signature-based detection and reshaped how defenders think about OT security. Each incident reinforced that signatures are too narrow and reactive to serve as the foundation of defense.

2015: BlackEnergy 3 in Ukraine

According to CISA, on December 23, 2015, Ukrainian power companies experienced unscheduled power outages affecting a large number of customers — public reports indicate that the BlackEnergy malware was discovered on the companies’ computer networks.

2016: Industroyer/CrashOverride

CISA describes CrashOverride malwareas an “extensible platform” reported to have been used against critical infrastructure in Ukraine in 2016. It was capable of targeting industrial control systems using protocols such as IEC‑101, IEC‑104, and IEC‑61850, and fundamentally abused legitimate control system functionality to deliver destructive effects. CISA emphasizes that “traditional methods of detection may not be sufficient to detect infections prior to the malware execution” and recommends behavioral analysis techniques to identify precursor activity to CrashOverride.

2017: TRITON Malware

The U.S. Department of the Treasury reports that the Triton malware, also known as TRISIS or HatMan, was “designed specifically to target and manipulate industrial safety systems” in a petrochemical facility in the Middle East. The malware was engineered to control Safety Instrumented System (SIS) controllers responsible for emergency shutdown procedures. During the attack, several SIS controllers entered a failed‑safe state, which prevented the malware from fully executing.

The broader lessons

These events revealed three enduring truths:

  • Signatures have diminishing returns: BlackEnergy showed that while signatures can eventually identify adapted IT malware, they arrive too late to prevent OT disruption.
  • Behavioral monitoring is essential: CrashOverride demonstrated that adversaries abuse legitimate industrial protocols, making behavioral and anomaly detection more effective than traditional signature methods.
  • Critical safety systems are now targets: TRITON revealed that attackers are willing to compromise safety instrumented systems, elevating risks from operational disruption to potential physical harm.

The natural progression for utilities is clear. Static, file-based defenses are too fragile for the realities of OT.  

These incidents showed that behavioral analytics and anomaly detection are far more effective at identifying suspicious activity across industrial systems, regardless of whether the malicious code has ever been seen before.

Strategic risks of overreliance on signatures

  • False sense of security: Believing signatures will block advanced threats can delay investment in more effective detection methods.
  • Resource drain: Constantly updating, tuning, and maintaining signature libraries consumes valuable staff resources without proportional benefit.
  • Adversary advantage: Nation-state and advanced actors understand the reactive nature of signature defenses and design attacks to circumvent them from the start.

Recommended Alternatives (with real-world OT examples)

 Alternative strategies for detecting cyber attacks in OT
Figure 1: Alternative strategies for detecting cyber attacks in OT

Behavioral and anomaly detection

Rather than relying on signatures, focusing on behavior enables detection of threats that have never been seen before—even trusted-looking devices.

Real-world insight:

In one OT setting, a vendor inadvertently left a Raspberry Pi on a customer’s ICS network. After deployment, Darktrace’s system flagged elastic anomalies in its HTTPS and DNS communication despite the absence of any known indicators of compromise. The alerting included sustained SSL increases, agent‑beacon activity, and DNS connections to unusual endpoints, revealing a possible supply‑chain or insider risk invisible to static tools.  

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Threat intelligence sharing & building toward zero-trust philosophy

Frameworks such as MITRE ATT&CK for ICS provide a common language to map activity against known adversary tactics, helping teams prioritize detections and response strategies. Similarly, information-sharing communities like E-ISAC and regional ISACs give utilities visibility into the latest tactics, techniques, and procedures (TTPs) observed across the sector. This level of intel can help shift the focus away from chasing individual signatures and toward building resilience against how adversaries actually operate.

Real-world insight:

Darktrace’s AI embodies zero‑trust by assuming breach potential and continually evaluating all device behavior, even those deemed trusted. This approach allowed the detection of an anomalous SharePoint phishing attempt coming from a trusted supplier, intercepted by spotting subtle patterns rather than predefined rules. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on critical-national infrastructure.

This reinforces the need to monitor behavioral deviations across the supply chain, not just known bad artifacts.

Defense-in-Depth with OT context & unified visibility

OT environments demand visibility that spans IT, OT, and IoT layers, supported by risk-based prioritization.

Real-world insight:

Darktrace / OT offers unified AI‑led investigations that break down silos between IT and OT. Smaller teams can see unusual outbound traffic or beaconing from unknown OT devices, swiftly investigate across domains, and get clear visibility into device behavior, even when they lack specialized OT security expertise.  

Moreover, by integrating contextual risk scoring, considering real-world exploitability, device criticality, firewall misconfiguration, and legacy hardware exposure, utilities can focus on the vulnerabilities that genuinely threaten uptime and safety, rather than being overwhelmed by CVE noise.  

Regulatory alignment and positive direction

Industry regulations are beginning to reflect this evolution in strategy. NERC CIP-015 requires internal network monitoring that detects anomalies, and the standard references anomalies 15 times. In contrast, signature-based detection is not mentioned once.

This regulatory direction shows that compliance bodies understand the limitations of static defenses and are encouraging utilities to invest in anomaly-based monitoring and analytics. Utilities that adopt these approaches will not only be strengthening their resilience but also positioning themselves for regulatory compliance and operational success.

Conclusion

Signature-based detection retains utility for common IT malware, but it cannot serve as the backbone of security for power utilities. History has shown that major OT attacks are rarely stopped by signatures, since each campaign targets specific systems with customized tools. The most dangerous adversaries, from insiders to nation-states, actively design their operations to avoid detection by signature-based tools.

A more effective strategy prioritizes behavioral analytics, anomaly detection, and community-driven intelligence sharing. These approaches not only catch known threats, but also uncover the subtle anomalies and novel attack techniques that characterize tomorrow’s incidents.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

/

Identity

/

August 21, 2025

From VPS to Phishing: How Darktrace Uncovered SaaS Hijacks through Virtual Infrastructure Abuse

VPS phishingDefault blog imageDefault blog image

What is a VPS and how are they abused?

A Virtual Private Server (VPS) is a virtualized server that provides dedicated resources and control to users on a shared physical device.  VPS providers, long used by developers and businesses, are increasingly misused by threat actors to launch stealthy, scalable attacks. While not a novel tactic, VPS abuse is has seen an increase in Software-as-a-Service (SaaS)-targeted campaigns as it enables attackers to bypass geolocation-based defenses by mimicking local traffic, evade IP reputation checks with clean, newly provisioned infrastructure, and blend into legitimate behavior [3].

VPS providers like Hyonix and Host Universal offer rapid setup and minimal open-source intelligence (OSINT) footprint, making detection difficult [1][2]. These services are not only fast to deploy but also affordable, making them attractive to attackers seeking anonymous, low-cost infrastructure for scalable campaigns. Such attacks tend to be targeted and persistent, often timed to coincide with legitimate user activity, a tactic that renders traditional security tools largely ineffective.

Darktrace’s investigation into Hyonix VPS abuse

In May 2025, Darktrace’s Threat Research team investigated a series of incidents across its customer base involving VPS-associated infrastructure. The investigation began with a fleet-wide review of alerts linked to Hyonix (ASN AS931), revealing a noticeable spike in anomalous behavior from this ASN in March 2025. The alerts included brute-force attempts, anomalous logins, and phishing campaign-related inbox rule creation.

Darktrace identified suspicious activity across multiple customer environments around this time, but two networks stood out. In one instance, two internal devices exhibited mirrored patterns of compromise, including logins from rare endpoints, manipulation of inbox rules, and the deletion of emails likely used in phishing attacks. Darktrace traced the activity back to IP addresses associated with Hyonix, suggesting a deliberate use of VPS infrastructure to facilitate the attack.

On the second customer network, the attack was marked by coordinated logins from rare IPs linked to multiple VPS providers, including Hyonix. This was followed by the creation of inbox rules with obfuscated names and attempts to modify account recovery settings, indicating a broader campaign that leveraged shared infrastructure and techniques.

Darktrace’s Autonomous Response capability was not enabled in either customer environment during these attacks. As a result, no automated containment actions were triggered, allowing the attack to escalate without interruption. Had Autonomous Response been active, Darktrace would have automatically blocked connections from the unusual VPS endpoints upon detection, effectively halting the compromise in its early stages.

Case 1

Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.
Figure 1: Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.

Initial Intrusion

On May 19, 2025, Darktrace observed two internal devices on one customer environment initiating logins from rare external IPs associated with VPS providers, namely Hyonix and Host Universal (via Proton VPN). Darktrace recognized that these logins had occurred within minutes of legitimate user activity from distant geolocations, indicating improbable travel and reinforcing the likelihood of session hijacking. This triggered Darktrace / IDENTITY model “Login From Rare Endpoint While User Is Active”, which highlights potential credential misuse when simultaneous logins occur from both familiar and rare sources.  

Shortly after these logins, Darktrace observed the threat actor deleting emails referring to invoice documents from the user’s “Sent Items” folder, suggesting an attempt to hide phishing emails that had been sent from the now-compromised account. Though not directly observed, initial access in this case was likely achieved through a similar phishing or account hijacking method.

 Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.
Figure 2: Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.

Case 2

Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.
Figure 3: Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.

In the second customer environment, Darktrace observed similar login activity originating from Hyonix, as well as other VPS providers like Mevspace and Hivelocity. Multiple users logged in from rare endpoints, with Multi-Factor Authentication (MFA) satisfied via token claims, further indicating session hijacking.

Establishing control and maintaining persistence

Following the initial access, Darktrace observed a series of suspicious SaaS activities, including the creation of new email rules. These rules were given minimal or obfuscated names, a tactic often used by attackers to avoid drawing attention during casual mailbox reviews by the SaaS account owner or automated audits. By keeping rule names vague or generic, attackers reduce the likelihood of detection while quietly redirecting or deleting incoming emails to maintain access and conceal their activity.

One of the newly created inbox rules targeted emails with subject lines referencing a document shared by a VIP at the customer’s organization. These emails would be automatically deleted, suggesting an attempt to conceal malicious mailbox activity from legitimate users.

Mirrored activity across environments

While no direct lateral movement was observed, mirrored activity across multiple user devices suggested a coordinated campaign. Notably, three users had near identical similar inbox rules created, while another user had a different rule related to fake invoices, reinforcing the likelihood of a shared infrastructure and technique set.

Privilege escalation and broader impact

On one account, Darktrace observed “User registered security info” activity was shortly after anomalous logins, indicating attempts to modify account recovery settings. On another, the user reset passwords or updated security information from rare external IPs. In both cases, the attacker’s actions—including creating inbox rules, deleting emails, and maintaining login persistence—suggested an intent to remain undetected while potentially setting the stage for data exfiltration or spam distribution.

On a separate account, outbound spam was observed, featuring generic finance-related subject lines such as 'INV#. EMITTANCE-1'. At the network level, Darktrace / NETWORK detected DNS requests from a device to a suspicious domain, which began prior the observed email compromise. The domain showed signs of domain fluxing, a tactic involving frequent changes in IP resolution, commonly used by threat actors to maintain resilient infrastructure and evade static blocklists. Around the same time, Darktrace detected another device writing a file named 'SplashtopStreamer.exe', associated with the remote access tool Splashtop, to a domain controller. While typically used in IT support scenarios, its presence here may suggest that the attacker leveraged it to establish persistent remote access or facilitate lateral movement within the customer’s network.

Conclusion

This investigation highlights the growing abuse of VPS infrastructure in SaaS compromise campaigns. Threat actors are increasingly leveraging these affordable and anonymous hosting services to hijack accounts, launch phishing attacks, and manipulate mailbox configurations, often bypassing traditional security controls.

Despite the stealthy nature of this campaign, Darktrace detected the malicious activity early in the kill chain through its Self-Learning AI. By continuously learning what is normal for each user and device, Darktrace surfaced subtle anomalies, such as rare login sources, inbox rule manipulation, and concurrent session activity, that likely evade traditional static, rule-based systems.

As attackers continue to exploit trusted infrastructure and mimic legitimate user behavior, organizations should adopt behavioral-based detection and response strategies. Proactively monitoring for indicators such as improbable travel, unusual login sources, and mailbox rule changes, and responding swiftly with autonomous actions, is critical to staying ahead of evolving threats.

Credit to Rajendra Rushanth (Cyber Analyst), Jen Beckett (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

·      1: https://cybersecuritynews.com/threat-actors-leveraging-vps-hosting-providers/

·      2: https://threatfox.abuse.ch/asn/931/

·      3: https://www.cyfirma.com/research/vps-exploitation-by-threat-actors/

Appendices

Darktrace Model Detections

•   SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

•   SaaS / Compromise / Suspicious Login and Mass Email Deletes

•   SaaS / Resource / Mass Email Deletes from Rare Location

•   SaaS / Compromise / Unusual Login and New Email Rule

•   SaaS / Compliance / Anomalous New Email Rule

•   SaaS / Resource / Possible Email Spam Activity

•   SaaS / Unusual Activity / Multiple Unusual SaaS Activities

•   SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

•   SaaS / Access / Unusual External Source for SaaS Credential Use

•   SaaS / Compromise / High Priority Login From Rare Endpoint

•   SaaS / Compromise / Login From Rare Endpoint While User Is Active

List of Indicators of Compromise (IoCs)

Format: IoC – Type – Description

•   38.240.42[.]160 – IP – Associated with Hyonix ASN (AS931)

•   103.75.11[.]134 – IP – Associated with Host Universal / Proton VPN

•   162.241.121[.]156 – IP – Rare IP associated with phishing

•   194.49.68[.]244 – IP – Associated with Hyonix ASN

•   193.32.248[.]242 – IP – Used in suspicious login activity / Mullvad VPN

•   50.229.155[.]2 – IP – Rare login IP / AS 7922 ( COMCAST-7922 )

•   104.168.194[.]248 – IP – Rare login IP / AS 54290 ( HOSTWINDS )

•   38.255.57[.]212 – IP – Hyonix IP used during MFA activity

•   103.131.131[.]44 – IP – Hyonix IP used in login and MFA activity

•   178.173.244[.]27 – IP – Hyonix IP

•   91.223.3[.]147 – IP – Mevspace Poland, used in multiple logins

•   2a02:748:4000:18:0:1:170b[:]2524 – IPv6 – Hivelocity VPS, used in multiple logins and MFA activity

•   51.36.233[.]224 – IP – Saudi ASN, used in suspicious login

•   103.211.53[.]84 – IP – Excitel Broadband India, used in security info update

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

•   Initial Access – T1566 – Phishing

                       T1566.001 – Spearphishing Attachment

•   Execution – T1078 – Valid Accounts

•   Persistence – T1098 – Account Manipulation

                       T1098.002 – Exchange Email Rules

•   Command and Control – T1071 – Application Layer Protocol

                       T1071.001 – Web Protocols

•   Defense Evasion – T1036 – Masquerading

•   Defense Evasion – T1562 – Impair Defenses

                       T1562.001 – Disable or Modify Tools

•   Credential Access – T1556 – Modify Authentication Process

                       T1556.004 – MFA Bypass

•   Discovery – T1087 – Account Discovery

•      Impact – T1531 – Account Access Removal

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI