Blog
/
/
June 12, 2024

Meeten Malware: A Cross-Platform Threat to Crypto Wallets on macOS and Windows

Cado Security Labs (now part of Darktrace) identified a "Meeten" campaign deploying a cross-platform (macOS/Windows) infostealer called Realst. Threat actors create fake Web3 companies with AI-generated content and social media to trick targets into downloading malicious meeting applications.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Jun 2024

Introduction: Meeten malware

Researchers from Cado Security Labs (now part of Darktrace) have identified a new sophisticated scam targeting people who work in Web3. The campaign includes cryptostealer Realst that has both macOS and Windows variants, and has been active for around four months. Research shows that the threat actors behind the malware have set up fake companies using AI to make them increase legitimacy. The company, which is currently going by the name “Meetio”, has cycled through various names over the past few months. In order to appear as a legitimate company, the threat actors created a website with AI-generated content, along with social media accounts. The company reaches out to targets to set up a video call, prompting the user to download the meeting application from the website, which is Realst info stealer. 

Meeten

Screenshot of fake company homepage
Figure 1: Fake company homepage

“Meeten” is the application that is attempting to scam users into downloading an information stealer. The company regularly changes names, and has also gone by Clusee[.]com, Cuesee, Meeten[.]gg, Meeten[.]us, Meetone[.]gg and is currently going by the name Meetio. In order to gain credibility, the threat actors set up full company websites, with AI-generated blog and product content and social media accounts including Twitter and Medium.

Based on public reports from targets (withheld from this post for privacy), the scam is conducted in multiple ways. In one reported instance, a user was contacted on Telegram by someone they knew who wanted to discuss a business opportunity and to schedule a call. However, the Telegram account was created to impersonate a contact of the target. Even more interestingly, the scammer sent an investment presentation from the target’s company to him, indicating a sophisticated and targeted scam. Other reports of targeted users report being on calls related to Web3 work, downloading the software and having their cryptocurrency stolen.

After initial contact, the target would be directed to the Meeten website to download the product. In addition to hosting information stealers, the Meeten websites contain Javascript to steal cryptocurrency that is stored in web browsers, even before installing any malware. 

Script
Figure 2: Script

Technical analysis

macOS version

Name: CallCSSetup.pkg

Meeten downloads page
Figure 3: Downloads page on Meeten

Once the victim is directed to the “Meeten” website, the downloads page offers macOS or Windows/Linux. In this iteration of the website, all download links lead to the macOS version. The package file contains a 64-bit binary named “fastquery”, however other versions of the malware are distributed as a DMG with a multi-arch binary. The binary is written in Rust, with the main functionality being information stealing. 

When opened, two error messages appear. The first one states “Cannot connect to the server. Please reinstall or use a VPN.” with a continue button. Osascript, the macOS command-line tool for running AppleScript and JavaScript is used to prompt the user for their password, as commonly seen in macOS malware. [1]

Pop up
Figure 4: Popup that requests users password
Code
Figure 5

The malware iterates through various data stores, grabs sensitive information, creates a folder where the data is stored, and then exfiltrates the data as a zip. 

Folders
Figure 6: Folders and files created by Meeten

Realst Stealer looks for and exfiltrates if available:

  • Telegram credentials
  • Banking card details
  • Keychain credentials
  • Browser cookies and autofill credentials from Google Chrome, Opera, Brave, Microsoft Edge, Arc, CocCoc and Vivaldi
  • Ledger Wallets
  • Trezor Wallets

The data is sent to 139[.]162[.]179.170:8080/new_analytics with “log_id”, “anal_data” and “archive”. This contains the zip data to be exfiltrated along with analytics that include build name, build version, with system information. 

System information
Figure 7: System information that is sent as a log

Build information is also sent to 139[.]162[.]179.170:8080/opened along with metrics sent to /metrics. Following the data exfiltration, the created temporary directories are removed from the system. 

Windows version

Name: MeetenApp.exe

Meeten Setup Install
Figure 8: Meeten Setup install

While analyzing the macOS version of Meeten, Cado Security Labs identified a Windows version of the malware. The binary, “MeetenApp.exe” is a Nullsoft Scriptable Installer System (NSIS) file, with a legitimate signature from “Brys Software” that has likely been stolen.

Digital signature details
Figure 9: Digital Signature of Meeten

After extracting the files from the installer, there are two folders $PLUGINDIR and $R0. Inside $PLUGINDIR is a 7zip archive named “app-64” that contains resources, assets, binaries and an app.asar file, indicating this is an Electron application. Electron applications are built on the Electron framework that is used to develop cross-platform desktop applications with web languages such as Javascript. App.asar files are used by Electron runtime, and is a virtual file system containing application code, assets, and dependencies.

File structure
Figure 10: Electron application meeten structure
Meeten's app .asar file
Figure 11: Structure of Meeten's App.asar file
package.json
Figure 12: Package.json

After extracting the contents of app.asar, we can see the main script points to index.js containing:

"use strict"; 
require("./bytecode-loader.cjs"); 
require("./index.jsc"); 

Both of these are Bytenode Compiled Javascript files. Bytenode is a tool that compiles JavaScript code into V8 bytecode, allowing the execution of JavaScript without exposing the source code. The bytecode is a low-level representation of the JavaScript code that can be executed by the V8 JavaScript engine which powers Node.js. Since the Javascript is compiled, reverse engineering of the files is more difficult, and less likely to be detected by security tools. 

While the file is compiled, there is still some information we can see as plain text. Similarly to the macOS version, a log with system information is sent to a remote server. A secondary password protected archive , “AdditionalFilesForMeet.zip” is retrieved from deliverynetwork[.]observer into a temporary directory “temp03241242”.

URL
Figure 13

From AdditionalFilesForMeet.zip is a binary named “MicrosoftRuntimeComponentsX86.exe” This binary gathers system information including HWID, geo IP, hostname, OS, users, cores, RAM, disk size and running processes. 

Exfiltrated system information
Figure 14: System information exfiltrated by Meeten

This data is sent to 172[.]104.133.212/opened, along with the build version of Meeten. 

Data
Figure 15

An additional payload is retrieved “UpdateMC.zip” from “deliverynetwork[.]observer/qfast” into AppData/Local/Temp. The archive file extracts to UpdateMC.exe. 

UpdateMC

UpdateMC.exe is a Rust-based binary, with similar functionality to the macOS version. The stealer searches in various data stores to collect and exfiltrate sensitive data as a zip. Meeten has the ability to steal data from:

  • Telegram credentials
  • Banking card details
  • Browser cookies, history and autofill credentials from Google Chrome, Opera, Brave, Microsoft Edge, Arc, CocCoc and Vivaldi
  • Ledger Wallets
  • Trezor Wallets
  • Phantom Wallets
  • Binance Wallets

The data is stored inside a folder named after the users’ HWID inside AppData/Local/Temp directory before being exfiltrated to 172[.]104.133.212. 

Domains.txt
Figure 16

For persistence, a registry key is added to HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run to ensure that the stealer is run each time the machine is started. 

Code
Figure 17: Disassembled code where 0xFFFFFFFF80000001 = HKEY_CURRENT_USER
Code
Figure 18: Meeten uses RegSetValueExW call to set registry key
Computer folder
Figure 19

Key takeaways 

This blog highlights a sophisticated campaign that uses AI to social engineer victims into downloading low detected malware that has the ability to steal financial information. Although the use of malicious Electron applications is relatively new, there has been an increase of threat actors creating malware with Electron applications. [2] As Electron apps become increasingly common, users must remain vigilant by verifying sources, implementing strict security practices, and monitoring for suspicious activity.

While much of the recent focus has been on the potential of AI to create malware, threat actors are increasingly using AI to generate content for their campaigns. Using AI enables threat actors to quickly create realistic website content that adds legitimacy to their scams, and makes it more difficult to detect suspicious websites. This shift shows how AI can be used as a powerful tool in social engineering. As a result, users need to exercise caution when being approached about business opportunities, especially through Telegram. Even if the contact appears to be an existing contact, it is important to verify the account and always be diligent when opening links. 

Indicators of compromise (IoCs)

http://172[.]104.133.212:8880/new_analytics

http://172[.]104.133.212:8880/opened

http://172[.]104.133.212:8880/metrics

http://172[.]104.133.212:8880/sede

139[.]162[.]179.170:8080

deliverynetwork[.]observer/qfast/UpdateMC.zip

deliverynetwork[.]observer/qfast/AdditionalFilesForMeet.zip

www[.]meeten.us

www[.]meetio.one

www[.]meetone.gg

www[.]clusee.com

199[.]247.4.86

File / md5

CallCSSetup.pkg  9b2d4837572fb53663fffece9415ec5a  

Meeten.exe  6a925b71afa41d72e4a7d01034e8501b  

UpdateMC.exe  209af36bb119a5e070bad479d73498f7  

MicrosoftRuntimeComponentsX64.exe d74a885545ec5c0143a172047094ed59  

CluseeApp.pkg 09b7650d8b4a6d8c8fbb855d6626e25d

MITRE ATT&CK

Technique name / ID

T1204  User Execution  

T1555.001  Credentials From Password Stores: Keychain  

T1555.003 Credentials From Password Stores: Credentials from Web Browsers  

T1539  Steal Web Session Cookie  

T1217 Browser Information Discovery  

T1082  System Information Discovery  

T1016 System Network Configuration Discovery  

T1033  System Owner/User Discovery  

T1005 Data from Local System

T1074  Local Data Staging  

T1071.001 Application Layer Protocol: Web Protocols  

T1041 Exfiltration Over C2 Channel  

T1657 Financial Theft  

T1070.004 File Deletion  

T1553.001 Subvert Trust Controls: Gatekeeper Bypass  

T1553.002  Subvert Trust Controls: Code Signing  

T1547.001 Boot or Logon Autostart Execution: Registry Run Folder  

T1497.001  Virtualization/Sandbox Evasion: System Checks  

T1058.001 Command and Scripting Interpreter: Powershell  

T1016 Network Configuration Discovery  

T1007 System Service Discovery

References

  1. https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos
  2. https://research.checkpoint.com/2022/new-malware-capable-of-controlling-social-media-accounts-infects-5000-machines-and-is-actively-being-distributed-via-gaming-applications-on-microsofts-official-store/  
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Network

/

November 5, 2025

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace Default blog imageDefault blog image

What is DragonForce?

DragonForce is a Ransomware-as-a-Service (RaaS) platform that emerged in late 2023, offering broad-scale capabilities and infrastructure to threat actors. Recently, DragonForce has been linked to attacks targeting the UK retail sector, resulting in several high-profile cases [1][2]. Moreover, the group launched an affiliate program offering a revenue share of roughly 20%, significantly lower than commissions reported across other RaaS platforms [3].

This Darktrace case study examines a DragonForce-linked RaaS infection within the manufacturing industry. The earliest signs of compromise were observed during working hours in August 2025, where an infected device started performing network scans and attempted to brute-force administrative credentials. After eight days of inactivity, threat actors returned and multiple devices began encrypting files via the SMB protocol using a DragonForce-associated file extension. Ransom notes referencing the group were also dropped, suggesting the threat actor is claiming affiliation with DragonForce, though this has not been confirmed.

Despite Darktrace’s detection of the attack in its early stages, the customer’s deployment did not have Darktrace’s Autonomous Response capability configured, allowing the threat to progress to data exfiltration and file encryption.

Darktrace's Observations

While the initial access vector was not clearly defined in this case study, it was likely achieved through common methods previously employed out by DragonForce affiliates. These include phishing emails leveraging social engineering tactics, exploitation of public-facing applications with known vulnerabilities, web shells, and/or the abuse of remote management tools.

Darktrace’s analysis identified internal devices performing internal network scanning, brute-forcing credentials, and executing unusual Windows Registry operations. Notably, Windows Registry events involving "Schedule\Taskcache\Tasks" contain subkeys for individual tasks, storing GUIDs that can be used to locate and analyze scheduled tasks. Additionally, Control\WMI\Security holds security descriptors for WMI providers and Event Tracing loggers that use non-default security settings respectively.

Furthermore, Darktrace identified data exfiltration activity over SSH, including connections to an ASN associated with a malicious hosting service geolocated in Russia.

1. Network Scan & Brute Force

Darktrace identified anomalous behavior in late August to early September 2025, originating from a source device engaging in internal network scanning followed by brute-force attempts targeting administrator credential, including “administrator”, “Admin”, “rdpadmin”, “ftpadmin”.

Upon further analysis, one of the HTTP connections seen in this activity revealed the use of the user agent string “OpenVAS-VT”, suggesting that the device was using the OpenVAS vulnerability scanner. Subsequently, additional devices began exhibiting network scanning behavior. During this phase, a file named “delete.me” was deleted by multiple devices using SMB protocol. This file is commonly associated with network scanning and penetration testing tool NetScan.

2. Windows Registry Key Update

Following the scanning phase, Darktrace observed the initial device then performing suspicious Winreg operations. This included the use of the ”BaseRegOpenKey” function across multiple registry paths.

Additional operations such as “BaseRegOpenKey” and “BaseRegQueryValue” were also seen around this time. These operations are typically used to retrieve specific registry key values and allow write operations to registry keys.

The registry keys observed included “SYSTEM\CurrentControlSet\Control\WMI\Security” and “Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks”. These keys can be leveraged by malicious actors to update WMI access controls and schedule malicious tasks, respectively, both of which are common techniques for establishing persistence within a compromised system.

3. New Administrator Credential Usage

Darktrace subsequently detected the device using a highly privileged credential, “administrator”, via a successful Kerberos login for the first time. Shortly after, the same credential was used again for a successful SMB session.

These marked the first instances of authentication using the “administrator” credential across the customer’s environment, suggesting potential malicious use of the credential following the earlier brute-force activity.

Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Figure 1: Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.
Figure 2: Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.

4. Data Exfiltration

Prior to ransomware deployment, several infected devices were observed exfiltrating data to the malicious IP 45.135.232[.]229 via SSH connections [7][8]. This was followed by the device downloading data from other internal devices and transferring an unusually large volume of data to the same external endpoint.

The IP address was first seen on the network on September 2, 2025 - the same date as the observed data exfiltration activity preceding ransomware deployment and encryption.

Further analysis revealed that the endpoint was geolocated in Russia and registered to the malicious hosting provider Proton66. Multiple external researchers have reported malicious activity involving the same Proton66 ASN (AS198953 Proton66 OOO) as far back as April 2025. These activities notably included vulnerability scanning, exploitation attempts, and phishing campaigns, which ultimately led to malware [4][5][6].

Data Exfiltration Endpoint details.

  • Endpoint: 45.135.232[.]229
  • ASN: AS198953 Proton66 OOO
  • Transport protocol: TCP
  • Application protocol: SSH
  • Destination port: 22
Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.
Figure 3: Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.

Further investigation into the endpoint using open-source intelligence (OSINT) revealed that it led to a Microsoft Internet Information Services (IIS) Manager console webpage. This interface is typically used to configure and manage web servers. However, threat actors have been known to exploit similar setups, using fake certificate warnings to trick users into downloading malware, or deploying malicious IIS modules to steal credentials.

Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.
Figure 4: Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.

5. Ransomware Encryption & Ransom Note

Multiple devices were later observed connecting to internal devices via SMB and performing a range of actions indicative of file encryption. This suspicious activity prompted Darktrace’s Cyber AI Analyst to launch an autonomous investigation, during which it pieced together associated activity and provided concrete timestamps of events for the customer’s visibility.

During this activity, several devices were seen writing a file named “readme.txt” to multiple locations, including network-accessible webroot paths such as inetpub\ and wwwroot\. This “readme.txt” file, later confirmed to be the ransom note, claimed the threat actors were affiliated with DragonForce.

At the same time, devices were seen performing SMB Move, Write and ReadWrite actions involving files with the “.df_win” extension across other internal devices, suggesting that file encryption was actively occurring.

Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Figure 5: Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.
Figure 6: Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.

Conclusion

The rise of Ransomware-as-a-Service (RaaS) and increased attacker customization is fragmenting tactics, techniques, and procedures (TTPs), making it increasingly difficult for security teams to prepare for and defend against each unique intrusion. RaaS providers like DragonForce further complicate this challenge by enabling a wide range of affiliates, each with varying levels of sophistication [9].

In this instance, Darktrace was able to identify several stages of the attack kill chain, including network scanning, the first-time use of privileged credentials, data exfiltration, and ultimately ransomware encryption. Had the customer enabled Darktrace’s Autonomous Response capability, it would have taken timely action to interrupt the attack in its early stages, preventing the eventual data exfiltration and ransomware detonation.

Credit to Justin Torres, Senior Cyber Analyst, Nathaniel Jones, VP, Security & AI Strategy, FCISO, & Emma Foulger, Global Threat Research Operations Lead.

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References:

1. https://www.infosecurity-magazine.com/news/dragonforce-goup-ms-coop-harrods/

2. https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants

3. https://blog.checkpoint.com/security/dragonforce-ransomware-redefining-hybrid-extortion-in-2025/

4. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-1-mass-scanning-and-exploit-campaigns/

5. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-2-compromised-wordpress-pages-and-malware-campaigns/

6. https://www.broadcom.com/support/security-center/protection-bulletin/proton66-infrastructure-tied-to-expanding-malware-campaigns-and-c2-operations

7. https://www.virustotal.com/gui/ip-address/45.135.232.229

8. https://spur.us/context/45.135.232.229

9. https://www.group-ib.com/blog/dragonforce-ransomware/

IoC - Type - Description + Confidence

·      45.135.232[.]229 - Endpoint Associated with Data Exfiltration

·      .readme.txt – Ransom Note File Extension

·      .df_win – File Encryption Extension Observed

MITRE ATT&CK Mapping

DragonForce TTPs vs Darktrace Models

Initial Access:

·      Anomalous Connection::Callback on Web Facing Device

Command and Control:

·      Compromise::SSL or HTTP Beacon

·      Compromise::Beacon to Young Endpoint

·      Compromise::Beaconing on Uncommon Port

·      Compromise::Suspicious SSL Activity

·      Anomalous Connection::Devices Beaconing to New Rare IP

·      Compromise::Suspicious HTTP and Anomalous Activity

·      DNS Tunnel with TXT Records

Tooling:

·      Anomalous File::EXE from Rare External Location

·      Anomalous File::Masqueraded File Transfer

·      Anomalous File::Numeric File Download

·      Anomalous File::Script from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Zip or Gzip from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Internet Facing System File Download

Reconnaissance:

·      Device::Suspicious SMB Query

·      Device::ICMP Address Scan

·      Anomalous Connection::SMB Enumeration

·      Device::Possible SMB/NTLM Reconnaissance

·      Anomalous Connection::Possible Share Enumeration Activity

·      Device::Possible Active Directory Enumeration

·      Anomalous Connection::Large Volume of LDAP Download

·      Device::Suspicious LDAP Search Operation

Lateral Movement:

·      User::Suspicious Admin SMB Session

·      Anomalous Connection::Unusual Internal Remote Desktop

·      Anomalous Connection::Unusual Long Remote Desktop Session

·      Anomalous Connection::Unusual Admin RDP Session

·      User::New Admin Credentials on Client

·      User::New Admin Credentials on Server

·      Multiple Device Correlations::Spreading New Admin Credentials

·      Anomalous Connection::Powershell to Rare External

·      Device::New PowerShell User Agent

·      Anomalous Active Directory Web Services

·      Compromise::Unusual SVCCTL Activity

Evasion:

·      Unusual Activity::Anomalous SMB Delete Volume

·      Persistence

·      Device::Anomalous ITaskScheduler Activity

·      Device::AT Service Scheduled Task

·      Actions on Objectives

·      Compromise::Ransomware::Suspicious SMB Activity (EM)

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Compromise::Ransomware::Possible Ransom Note Write

·      Data Sent to Rare Domain

·      Uncommon 1 GiB Outbound

·      Enhanced Unusual External Data Transfer

Darktrace Cyber AI Analyst Coverage/Investigation Events:

·      Web Application Vulnerability Scanning of Multiple Devices

·      Port Scanning

·      Large Volume of SMB Login Failures

·      Unusual RDP Connections

·      Widespread Web Application Vulnerability Scanning

·      Unusual SSH Connections

·      Unusual Repeated Connections

·      Possible Application Layer Reconnaissance Activity

·      Unusual Administrative Connections

·      Suspicious Remote WMI Activity

·      Extensive Unusual Administrative Connections

·      Suspicious Directory Replication Service Activity

·      Scanning of Multiple Devices

·      Unusual External Data Transfer

·      SMB Write of Suspicious File

·      Suspicious Remote Service Control Activity

·      Access of Probable Unencrypted Password Files

·      Internal Download and External Upload

·      Possible Encryption of Files over SMB

·      SMB Writes of Suspicious Files to Multiple Devices

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Justin Torres
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI