Blog
/
/
June 24, 2020

Ekans Ransomware: Insights on OT Cyber Attacks

Uncover the impacts of the Ekans ransomware attack on operational technology and what organizations can do to enhance their cybersecurity posture.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Jun 2020

In recent weeks, the security industry has become acutely aware of the challenges surrounding OT protection, with the EKANS ransomware attacks on Honda and the Enel Group demonstrating how novel threats continue to slip through the cracks of security systems in ICS environments. What’s more, with such attacks resulting in loss of productivity and damage to critical infrastructure, the need for a cyber security strategy that bridges both OT and IT technology is increasingly urgent.

The recent EKANS ransomware has been making waves in security circles because of its ability to target 64 specific ICS mechanisms in its ‘kill chain’. Standard attacks target ICS environments through vulnerabilities in IT infrastructure, pivoting through unpatched software to reach OT machinery, rather than heading straight for the jugular. The EKANS ransomware targeted ICS vulnerabilities directly and can be considered the first of its kind – marking a significant evolution in attacker techniques. Before now, ICS machinery-specific ransomware had either been an academic theory or a marketing tool.

Technical analysis

Written in the Go programming language, EKANS has additional obfuscation abilities compared to other ransomware strains, which enable it to better evade detection. As will be seen in this analysis, the power of EKANS ransomware is two-fold – it is able to disguise its attack in the beginning stages, and when it does strike, it is targeted at industrial pain points.

The ransomware’s first port of call is to check if the victim has already been encrypted. If not, standard encryption library functions ensue. These involve both the execution of encryption operations and the deletion of Volume Shadow Copy back-ups – meaning the victim cannot simply retrieve duplicated data copies and circumvent the ransom.

Before the relevant files are encrypted, EKANS ransomware kills various ICS processes listed in a pre-programmed, hard-coded list. The affected applications include GE’s Proficy data historian, GE Fanuc automation software, FLEXNet licensing server instance, Thingworx monitoring and management software, and Honeywell’s HMIWeb application – all specific to ICS environments.

proficyclient.exe
vmacthlp.exe
msdtssrvr.exe
sqlservr.exe
msmdsrv.exe
reportingservicesservice.exe
dsmcsvc.exe
winvnc4.exe
client.exe
collwrap.exe
bluestripecollector.exe

Figure 1: A small excerpt of the ICS-related processes targeted in the EKANS ‘kill list’

While stalling these processes doesn’t necessarily bring industrial plants crashing to a halt, it does reduce visibility and potentially make machine operations unpredictable. In the case of Honda’s attack, manufacturing operations across the US, the UK, and Turkey were suspended. With a workforce of 220,000 people worldwide, shutting down several factories and sending employees home results in a dramatic loss of production hours and employee salaries – not to mention the costs of getting systems up and running without giving in to ransom demands.

EKANS then goes one stage further. Once this initial kill chain has been executed, the ransomware starts encrypting data. Five randomly generated letters are added at the end of each original file extension. This in itself is unusual, as most ransomware encrypts data with a specific key.

Figure 2: Encryption results of EKANS ransomware

Rather than targeting specific devices or systems, EKANS ransomware looks to take down the entire network, which is part of what makes it such an aggressive style of ransomware. However, it lacks a self-propagating mechanism, so it has to be manually introduced to ICS environments. Malicious payloads hidden in links and attachments within emails are the primary mechanism used to introduce the ransomware. From there, EKANS exploits vulnerable and unpatched services, seeding itself across the entire business via script.

When the encryption process has been completed, a ransom note is displayed, requesting a covert financial exchange for a decryption key over the encrypted email platform CTemplar. In the case of both Honda and the Enel Group, they were told to contact CarrolBidell@tutanota[.]com for further information. The attackers also offered to send several decrypted files to prove the legitimacy of the encryption key.

| What happened to your files?
--------------------------------------------
We breached your corporate network and encrypted the data on your computers. The encrypted data includes documents, databases, photos and more –
all were encrypted using a military grade encryption algorithms (AES-256 and RSA-2048). You cannot access those files right now. But dont worry!
You can still get those files back and be up and running again in no time.
--------------------------------------------
| How to contact us to get your files back?
--------------------------------------------
The only way to restore your files is by purchasing a decryption tool loaded with a private key we created specifically for your network.
Once run on an effected computer, the tool will decrypt all encrypted files – and you resume day-to-day operations, preferably with
better cyber security in mind. If you are interested in purchasing the decryption tool contact us at %s
--------------------------------------------
| How can you be certain we have the decryption tool?
--------------------------------------------
In your mail to us attach up to 3 files (up to 3MB, no databases or spreadsheets).

Figure 3: Partial view of EKANS ransomware note

Honda has refrained from stating what specific plant capabilities were affected by the EKANS attack, however it has publicly affirmed that production operations have been affected in multiple factories across the world. Their visibility and control systems were disrupted significantly enough to suspend manufacturing.

Becoming immune to ransomware

While the EKANS ransomware leverages fairly crude techniques and is only able to halt processes rather than control ICS mechanisms, it represents a new frontier in OT cyber-attacks. ICS offensives will continue to evolve – with greater control over machinery a likely avenue of exploration for cyber-criminals.

What is clear from the Honda attack is that even some of the world’s largest global conglomerates are susceptible to these kind of ransomware attacks. What is needed to protect factory floors from such attacks is a cyber security solution that can detect the most subtle signals of threat, learning on the job to understand what is ‘normal’ for each unique ICS environment.

Darktrace’s AI learns the normal ‘patterns of life’ for every user, device, and controller across both OT and IT. By continuously analyzing data across organizations’ systems, the AI’s unique understanding of how each facet of a business and a dynamic workforce interacts ensures that any malicious activity is detected seconds after it emerges. In the case of EKANS, this self-learning approach would have identified a number of anomalous behaviors pertaining to the originally infected device, including beaconing to a rare destination and the unusual connections to encryption software.

Complementing Darktrace’s threat detection is the AI’s Autonomous Response abilities, which neutralize threats with surgical precision – allowing business activity to continue as normal. Autonomous Response has already proven itself successful in stopping ransomware attacks, preventing damaging operational outages at manufacturing facilities, hospitals, and municipalities around the world.

Conclusion

EKANS revealed that attackers are beginning to successfully target both IT and OT systems with one attack, making the need for security programs that can bridge this gap more urgent than ever. The ability to defend both environments with a single security solution ensures holistic protection for the entire organization. By correlating disparate data points across SaaS, email, cloud, traditional network, and OT environments, Cyber AI can identify and stop even the most sophisticated attacks.

The reality is that threats in the OT sphere will continue to evolve, becoming faster and more furious than ever. Given the potential damage ransomware can cause, security that can defend industrial systems along with dynamic workforces – detecting and stopping fast-acting threats across a complex business – has become more important than ever. The functionality of industrial systems depends on it.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI