Blog
/
OT
/
May 11, 2023

Securing OT Systems: The Limits of the Air Gap Approach

Air-gapped security measures are not enough for resilience against cyber attacks. Read about how to gain visibility & reduce your cyber vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023

At a Glance:

  • Air gaps reduce cyber risk, but they do not prevent modern cyber attacks
  • Having visibility into an air-gapped network is better than assuming your defenses are impenetrable and having zero visibility
  • Darktrace can provide visibility and resiliency without jeopardizing the integrity of the air gap

What is an 'Air Gap'?

Information technology (IT) needs to fluidly connect with the outside world in order channel a flow of digital information across everything from endpoints and email systems to cloud and hybrid infrastructures. At the same time, this high level of connectivity makes IT systems particularly vulnerable to cyber-attacks.  

Operational technology (OT), which controls the operations of physical processes, are considerably more sensitive. OT often relies on a high degree of regularity to maintain continuity of operations. Even the slightest disturbance can lead to disastrous results. Just a few seconds of delay on a programmable logic controller (PLC), for example, can significantly disrupt a manufacturing assembly line, leading to downtime at a considerable cost. In worst-case scenarios, disruptions to OT can even threaten human safety. 

An air gap is a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Organizations with OT have traditionally tried to reconcile this conflict between IT and OT by attempting to separate them completely. Essentially, the idea is to let IT do what IT does best — facilitate activities like communication and data transfer at rapid speeds, thus allowing people to connect with each other and access information and applications in an efficient capacity. But at the same time, erect an air gap between IT and OT so that any cyber threats that slip into IT systems do not then spread laterally into highly sensitive, mission-critical OT systems. This air gap is essentially a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Limitations of the Air Gap

The air gap approach makes sense, but it is far from perfect. First, many organizations that believe they have completely air-gapped systems in fact have unknown points of IT/OT convergence, that is, connections between IT and OT networks of which they are unaware. 

Many organizations today are also intentionally embracing IT/OT convergence to reap the benefits of digital transformation of their OT, in what is often called Industry 4.0. Examples include the industrial cloud (or ICSaaS), the industrial internet of things (IIoT), and other types of cyber-physical systems that offer increased efficiency and expanded capabilities when compared to more traditional forms of OT. Organizations may also embrace IT/OT convergence due to a lack of human capital, as convergence can make processes simpler and more efficient.

Even when an organization does have a true air gap (which is nearly impossible to confirm without full visibility across IT and OT environments), the fact is that there are a variety of ways for attackers to ‘jump the air gap'. Full visibility across IT and OT ecosystems in a single pane of glass is thus essential for organizations seeking to secure their OT. This is not only to illuminate any points of IT/OT convergence and validate the fact that an air gap exists in the first place, but also to see when an attack slips through the air gap.

Figure 1: Darktrace/OT's unified view of IT and OT environments.

Air Gap Attack Vectors

Even a perfect air gap will be vulnerable to a variety of different attack vectors, including (but not limited to) the following: 

  • Physical compromise: An adversary bypasses physical security and gains access directly to the air-gapped network devices. Physical access is by far the most effective and obvious technique.
  • Insider threats: Someone who is part of an organization and has access to air-gapped secure systems intentionally or unintentionally compromises a system.
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • Misconfiguration: Misconfiguration of access controls or permissions allows an attacker to access the air-gapped system through a separate device on the network.
  • Social engineering (media drop): If an attacker was able to successfully conduct a malicious USB/media drop and an employee was to use that media within the air-gapped system, the network could be compromised. 
  • Other advanced tactics: Thermal manipulation, covert surface vibrations, LEDs, ultrasonic transmissions, radio signals, and magnetic fields are among a range of advanced tactics documented and demonstrated by researchers at Ben Gurion University. 

Vulnerabilities of Air-Gapped Systems

Aside from susceptibility to advanced techniques, tactics, and procedures (TTPs) such as thermal manipulation and magnetic fields, more common vulnerabilities associated with air-gapped environments include factors such as unpatched systems going unnoticed, lack of visibility into network traffic, potentially malicious devices coming on the network undetected, and removable media being physically connected within the network. 

Once the attack is inside OT systems, the consequences can be disastrous regardless of whether there is an air gap or not. However, it is worth considering how the existence of the air gap can affect the time-to-triage and remediation in the case of an incident. For example, the existence of an air gap may seriously limit an incident response vendor’s ability to access the network for digital forensics and response. 

Kremlin Hackers Jumping the Air Gap 

In 2018, the U.S. Department of Homeland Security (DHS) issued an alert documenting the TTPs used by Russian threat actors known as Dragonfly and Energetic Bear. Further reporting alleged that these groups ‘jumped the air gap,’ and, concerningly, gained the ability to disable the grid at the time of their choosing. 

These attackers successfully gained access to sensitive air-gapped systems across the energy sector and other critical infrastructure sectors by targeting vendors and suppliers through spear-phishing emails and watering hole attacks. These vendors had legitimate access to air-gapped systems, and essentially brought the infection into these systems unintentionally when providing support services such as patch deployment.

This incident reveals that even if a sensitive OT system has complete digital isolation, this robust air gap still cannot fully eliminate one of the greatest vulnerabilities of any system—human error. Human error would still hold if an organization went to the extreme of building a faraday cage to eliminate electromagnetic radiation. Air-gapped systems are still vulnerable to social engineering, which exploits human vulnerabilities, as seen in the tactics that Dragonfly and Energetic Bear used to trick suppliers, who then walked the infection right through the front door. 

Ideally, a technology would be able to identify an attack regardless of whether it is caused by a compromised supplier, radio signal, or electromagnetic emission. By spotting subtle deviations from a device, human, or network’s normal ‘pattern of life’, Self-Learning AI detects even the most nuanced forms of threatening behavior as they emerge — regardless of the source or cause of the threat.

Darktrace/OT for Air-Gapped Environments

Darktrace/OT for air-gapped environments is a physical appliance that deploys directly to the air-gapped system. Using raw digital data from an OT network to understand the normal pattern of life, Darktrace/OT does not need any data or threat feeds from external sources because the AI builds an innate understanding of self without third-party support. 

Because all data-processing and analytics are performed locally on the Darktrace appliance, there is no requirement for Darktrace to have a connection out to the internet. As a result, Darktrace/OT provides visibility and threat detection to air-gapped or highly segmented networks without jeopardizing their integrity. If a human or machine displays even the most nuanced forms of threatening behavior, the solution can illuminate this in real time. 

Security professionals can then securely access Darktrace alerts from anywhere within the network, using a web browser and encrypted HTTPS, and in line with your organization’s network policies.

Figure 2: Darktrace/OT detecting anomalous connections to a SCADA ICS workstation.

With this deployment, Darktrace offers all the critical insights demonstrated in other Darktrace/OT deployments, including (but not limited to) the following:

Organizations seeking to validate whether they have an air gap in the first place and maintain the air gap as their IT and OT environments evolve will greatly benefit from the comprehensive visibility and continuous situational awareness offered by Darktrace’s Self-Learning AI. Also, organizations looking to poke holes in their air gap to embrace the benefits of IT/OT convergence will find that Self-Learning AI’s vigilance spots cyber-attacks that slip through. 

Whatever your organizations goals—be it embracing IIoT or creating a full-blown DMZ—by learning ‘you’, Darktrace’s Self-Learning AI can help you achieve them safely and securely. 

Learn more about Darktrace/OT

Credit to: Daniel Simonds and Oakley Cox for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement

More in this series

No items found.

Blog

/

Network

/

October 29, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORK, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI