Blog
/
Network
/
August 17, 2023

Successfully Containing an Admin Credential Attack

Discover how Darktrace's anomaly-based threat detection thwarted a cyber-attack on a customer's network, stopping a malicious actor in their tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Aug 2023

What is Admin Credential Abuse?

In an effort to remain undetected by increasingly vigilant security teams, malicious actors across the threat landscape often resort to techniques that allow them to remain ‘quiet’ on the network and carry out their objectives subtly. One such technique often employed by attackers is using highly privileged credentials to carry out malicious activity.

This emphasizes the need to be hyper vigilant and not assume that ‘administrative’ activity using privileged credentials is legitimate. In this way, both internal visibility and defense in-depth are needed, as well as a strong understanding of ‘normal’ administrative activity to then identify any deviations from this.  

In one recent example, Darktrace identified a threat actor attempting to use privileged administrative credentials to move laterally through a customer’s network and compromise two further critical servers. Darktrace DETECT™ identified that this activity was unusual and alerted the customer to early signs of compromise, reconnaissance and lateral movement to the other critical devices, while Darktrace RESPOND™ acted autonomously to inhibit the spread of activity and allowed the customer to quarantine the compromised devices.

Attack Overview and Darktrace Coverage

Over the course of a week in late May 2023, Darktrace observed a compromise on the network of a customer in the Netherlands. The threat actors primarily used living off the land techniques, abusing legitimate administrative credentials and executables to perform unexpected activities. This technique is intended to go under the radar of traditional security tools that are often unable to distinguish between the legitimate or malicious use of privileged credentials.

Darktrace was the only security solution in the customer’s stack that way able to detect and contain the attack, preventing it from spreading through their digital estate.

1. Device Reactivated

On May 22, 2023, Darktrace began to observe traffic originating from a File Server device which prior to this, had been been inactive on the network for some time, with no incoming or outgoing traffic recently observed for this IP. Therefore, upon initiating connections again, Darktrace’s AI tagged the device with the “Re-Activated Device” label. It also tagged the device as an “Internet Facing System”, which could represent an initial point of compromise.

Following this, the device was observed using an administrative credential that was commonly used across network, with no clear indications of brute-force activity or successive login failures preceeding this activity. The unusual use of a known credential on a network can be very difficult to detect for traditional security tools. Darktrace’s anomaly-based detection allows it to recognize subtle deviations in device behavior meaning it is uniquely placed to recognize this type of activity.

2. Reconaissance  

On the following day, the affected device began to perform SMB scans for open 445 ports, and writing files such as srvsvc and winreg, both of which are indicative of network  reconnaissance. Srvsvc is used to enumerate available SMB shares on destination devices which could be used to then write malicious files to these shares, while Winreg (Windows Registry) is used to store information that configures users, applications, and hardware devices [1]. Darktrace also observed the device carrying out DCE_RPC activity and making Windows Management Instrumentation (WMI) enumeration requests to other internal devices.

3. Lateral Movement via SMB

On May 24 and May 30, Darktrace observed the same device writing files over SMB to a number of other internal devices, including an SMB server and the Domain Controller. Darktrace identified that these writers were to privileged credential paths, such as C$ and ADMIN$, and it further recognized that the device was using the compromised administrative credential.

The files included remote command executable files (.exe) and batch scripts which execute commands upon clicking in a serial order. This behavior is indicative of a threat actor performing lateral movement in an attempt to infect other devices and strengthen their foothold in the network.

Files written:

·       LogConverter.bat

·       sql.bat

·       Microsoft.NodejsTools.PressAnyKey.exe

·       PSEXESVC.exe

·       Microsoft.NodejsTools.PressAnyKey.lnk

·       CG6oDkyFHl3R.t

5. Reconnaissance Spread

Around the same time as the observed lateral movement activity, between May 24 and May 30, the initially compromised device continued SMB and DCE_RPC activity, mainly involving SMB writes of files such as srvsvc, and PSEXESVC.exe.

Then, on May 28, Darktrace identified another internal Domain Controller engaging in similar suspicious behavior to the original compromised device. This included network scanning, enumeration and service control activity, indicating a spread of further malicious reconnaissance.

Following the successful detection of this activity, Darktrace’s Cyber AI Analyst launched autonomous investigations which was able to correlate incidents from multiple affected devices across the network, in doing so connecting multiple incidents into one security event.

Figure 1: Cyber AI Analyst connecting multiple events into one incident
Figure 2: Cyber AI Analyst investigation process to identify suspicious activity.

6. Lateral Movement

Alongside these SMB writes, the initially compromised device was seen connecting to various internal devices over ports associated with administrative protocols such as Remote Desktop Protocol (RDP). It also made a high volume of NTLM login failures for the credential ‘administrator’, suggesting that the malicious actor was attempting to brute-force an administrative credential.

7. Suspicious External Activity

Following earlier SMB writes from the initially compromised device to the Domain Controller server, the Domain Controller was seen making an unusual volume of external connections to rare endpoints which could indicate malicious command and control (C2) communication.

Alongside this activity, between May 30 and June 1, Darktrace also observed an unusually large number (over 12 million) of incoming connections from external endpoints. This activity is likely indicative of an attempted Denial of Service (DoS) attack.

Endpoints include:

·       45.15.145[.]92

·       198.2.200[.]89

·       162.211.180[.]215

Figure 3: Graphing function in the Darktrace UI showing the observed spike of inbound communication from external endpoints, indicating a potential DoS attack.

8. Reconnaissance and RDP activity

On May 31, the initially compromised device was seen creating an administrative RDP session with cookie ‘Administr’. Using the initially compromised administrative credential, further suspicious SMB activity was observed from the compromised devices on the same day including further SMB Enumeration, service control, PsExec remote command execution, and writes of another suspicious batch script file to various internal devices.

Darktrace RESPOND Coverage

Darktrace RESPOND’s autonomous response capabilities allowed it to take instantaneous preventative action against the affected devices as soon as suspicious activity was identified, consequently inhibiting the spread of this attack.

Specifically, Darktrace RESPOND was able to block suspicious connections to multiple internal devices and ports, among them port 445 which was used by threat actors to perform SMB scanning, for one hour. As a result of the autonomous actions carried out by Darktrace, the attack was stopped at the earliest possible stage.

Figure 4: Autonomous RESPOND actions taken against initially compromised devices.

In addition to these autonomous actions, the customer was able to further utilize RESPOND for containment purposes by manually actioning some of the more severe actions suggested by RESPOND, such as quarantining compromised devices from the rest of the network for a week.

Figure 5: Manually applied RESPOND actions to quarantine compromised devices for one week.

Conclusion

As attackers continue to employ harder to detect living off the land techniques to exploit administrative credentials and move laterally across networks, it is paramount for organizations to have an intelligent decision maker that can recgonize the subtle deviations in device behavior.

Thanks to its Self-Learning AI, Darktrace is uniquely placed to understand its customer’s networks, allowing it to recognize unusual or uncommon activity for individual devices or user credentials, irrespective of whether this activity is typically considered as legitimate.

In this case, Darktrace was the only solution in the customer’s security stack that successfully identified and mitigated this attack. Darktrace DETECT was able to identify the the early stages of the compromise and provide full visibility over the kill chain. Meanwhile, Darktrace RESPOND moved at machine-speed, blocking suspicious connections and preventing the compromise from spreading across the customer’s network.

Appendices

Darktrace DETECT Model Breaches

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / SMB Enumeration

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Admin SMB Session

Anomalous File / Internal / Executable Uploaded to DC

Anomalous File / Internal / Unusual SMB Script Write

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Possible Denial of Service Activity

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Compliance / Outgoing NTLM Request from DC

Compliance / SMB Drive Write

Device / Anomalous NTLM Brute Force

Device / ICMP Address Scan  

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Device / Network Scan

Device / New or Uncommon SMB Named Pipe

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / Possible SMB/NTLM Brute Force

Device / RDP Scan

Device / SMB Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Suspicious SMB Scanning Activity

Darktrace RESPOND Model Breaches

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Cyber AI Analyst Incidents

Extensive Suspicious Remote WMI Activity

Extensive Unusual Administrative Connections

Large Volume of SMB Login Failures from Multiple Devices

Port Scanning

Scanning of Multiple Devices

SMB Writes of Suspicious Files

Suspicious Chain of Administrative Connections

Suspicious DCE_RPC Activity

TCP Scanning of Multiple Devices

MITRE ATT&CK Mapping

RECONNAISSANCE
T1595 Active Scanning
T1589.001 Gathering Credentials

CREDENTIAL ACCESS
T1110 Brute Force

LATERAL MOVEMENT
T1210 Exploitation of Remote Services
T1021.001 Remote Desktop Protocol

COMMAND AND CONTROL
T1071 Application Layer Protocol

IMPACT
T1498.001 Direct Network Flood

References

[1] https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI