Blog
/
/
February 11, 2021

Detecting IoT Threats in Control Systems

Discover how Darktrace uncovers pre-existing threats in Industrial IoT systems. Learn about advanced detection techniques in industrial control systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2021

Industrial IoT (IIoT) devices are a pressing concern for security teams. Companies invest large sums of money to keep cyber-criminals out of industrial systems, but what happens when the hacker is already inside? Gateways and legacy security tools generally sit at the border of an organization and are designed to stop external threats, but are less effective once the threat is already inside. During this period, cyber-criminals carry out further reconnaissance, tamper with PLC settings, and subtly disrupt the production process.

Darktrace recently detected a series of pre-existing infections in Industrial IoT (IIoT) devices at a manufacturing firm in the EMEA region. The organization already had Darktrace in place in one area of the environment, but after seeing how the AI could successfully detect zero-day vulnerabilities and threats, they expanded the deployment, allowing Darktrace to actively monitor and defend interactions among its 5,000 devices, and dramatically improving visibility.

An unknown emerging threat was identified by Darktrace’s Industrial Immune System on multiple machines within hours of Darktrace being active in the environment. By casting light on this previously unknown threat, Darktrace enabled the customer to perform full incident response and threat investigation, before the attacker was able to cause any serious damage to the company.

Though it is unclear how long the devices had been infected, it is likely to have been first introduced manually via an infected USB. The affected endpoints were being used as part of a continuous production process and could not be installed with endpoint protection.

The Industrial Immune System, however, easily detects infections across the digital estate, regardless of the type of environment or technology. Darktrace AI does not rely on signature-based methods but instead continuously updates its understanding of what constitutes ‘normal’ in an industrial environment. This self-learning approach allows the AI to contain zero-days that have never been seen before in the wild, as well as detecting the new appearance of pre-existing attacks.

Industrial IoT attacked

Only a few hours after Darktrace AI had begun defending the wider connections and interactions across the manufacturing firm, the Industrial Immune System detected a highly unusual network scan. A timeline of events, from first scan to full incident response results and conclusions, is shown below:

Figure 1: Timeline of incident response across 28 hours

Darktrace’s AI recognized that the device was exploiting an SMBv1 protocol in order to attempt lateral movement. In addition to anonymous SMBv1 authentication, Darktrace detected the device abusing default vendor credentials for device enumeration.

The device made a large number of unusual connections, including connections to internal endpoints which the company had previously been unaware of. As these occurred, the Threat Visualizer, Darktrace’s user interface, provided a graphical visualization of the incident, illuminating the unusual activity’s spread from the infected device across the infrastructure in question.

Figure 2: The Darktrace Threat Visualizer

Darktrace’s Immune System identified that the infected Industrial IoT device was making an unusually large number of internal connections, suggesting an effort to perform reconnaissance.

Darktrace’s Cyber AI Analyst launched an immediate investigation into the alert, surfacing an incident summary at machine speed with all the information the security team needed to act.

Figure 3: An example of an AI Analyst Report on a network scan

The Cyber AI Analyst further identified two other devices behaving in a similar way, and these were removed from the network by the customer in response. When investigated by the security team, these devices were shown to be infected with the Yalove and Renocide worms, and the Autoit trojan-dropper. Open source intelligence suggests these infections are often spread via removable media such as USB drives.

Using Darktrace’s Advanced Search function, the customer was able to investigate related model breaches to build a list of similar indicators of compromise (IoCs), including failed external connections to www.whatismyip[.]com and DYNDNS IP addresses on HTTP port 80.

Recurring infections: How to deal with a persistent attack

In total, Darktrace was used to identify 13 infected production devices. The customer contacted the equipment owner, whose response confirmed that they had seen similar attacks on other networks in the past, including recurring infections.

Recurring infections imply one of two things: either, that the malware has a persistence mechanism, where it uses a range of techniques to remain undetected on the exploited machine and achieve persistent access to the system. Alternatively, a recurring infection could mean that the IoT manufacturer was not able to find all infected devices when they were first alerted to the compromise, and thus did not shut down the attack in its entirety.

As the infected machines are owned by a third party, they could not be immediately remediated. Darktrace AI, however, contained this threat with minimal business disruption. The customer was able to leave the infected devices active, which were still needed for production, confident that Darktrace would alert them if the infection spread or changed in behavior.

Industrial IoT: Shining a light on pre-existing threats

The mass adoption of Industrial IoT devices has made industrial environments more complex and more vulnerable than ever. This blog demonstrates the prevalent threat that attackers are already on the inside, and the importance for security teams to expand visibility over their full industrial system. In this case, the customer was able to use Darktrace’s AI to illuminate a previous blind spot and contain a persistent attack, while minimizing disruption to operations. Crucially, this ‘unknown known’ threat was detected without any prior knowledge of the devices, their supplier, or patch history, and without using malware signatures or IoCs.

The customer was made aware of the infection via the Darktrace SOC service. Yet the same outcome could have been obtained with other workflows provided by Darktrace, such as email alerting, notifications through the Darktrace mobile app, seamlessly integrating Darktrace with a SIEM solution, or alerting via an internal SOC.

Cyber AI Analyst enabled the customer to perform immediate incident response. While waiting for a reinstallation date with the equipment owner, the customer could keep the production devices online, knowing Darktrace would be monitoring the outstanding risk. In an industrial setting, trade-offs like this are often necessary to sustain production. Darktrace helps organizations maintain the vigilance they need to do this securely, and when remediation does become possible, Darktrace can be used to reliably locate the full extent of the infection.

Thanks to Darktrace analyst Oakley Cox for his insights on the above threat find.

Find out more about the Industrial Immune System

Darktrace model detections:

  • Device / Suspicious Network Scan Activity [Enhanced Monitoring]
  • Device / ICMP Address Scan
  • ICS / Anomalous IT to ICS Connection
  • Anomalous Connection / SMB Enumeration
  • Device / Network Scan

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI