ブログ
/
Network
/
December 16, 2024

Cleo File Transfer Vulnerability: Patch Pitfalls and Darktrace’s Detection of Post-Exploitation Activities

File transfer applications are prime targets for ransomware groups due to their critical role in business operations. Recent vulnerabilities in Cleo's MFT software, namely CVE-2024-50623 and CVE-2024-55956, highlight ongoing risks. Read more about the Darktrace Threat Research team’s investigation into these vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024

File transfer applications: A target for ransomware

File transfer applications have been a consistent target, particularly for ransomware groups, in recent years because they are key parts of business operations and have trusted access across different parts of an organization that include potentially confidential and personal information about an organization and its employees.

Recent targets of ransomware criminals includes applications like Acellion, Moveit, and GoAnywhere [1]. This seems to have been the case for Cleo’s managed file transfer (MFT) software solutions and the vulnerability CVE-2024-50623.

Threat overview: Understanding Cleo file transfer vulnerability

This vulnerability was believed to have been patched with the release of version 5.8.0.21 in late October 2024. However, open-source intelligence (OSINT) reported that the Clop ransomware group had managed to bypass the initial patch in late November, leading to the successful exploitation of the previously patched CVE.

In the last few days Cleo has published a new vulnerability, CVE-2024-55956, which is not a patch bypass of the CVE-2024-50623 but rather another vulnerability. This is also an unauthenticated file write vulnerability but while CVE-2024-50623 allows for both reading and writing arbitrary files, the CVE-2024-55956 only allows for writing arbitrary files and was addressed in version 5.8.0.24 [2].

Darktrace Threat Research analysts have already started investigating potential signs of devices running the Cleo software with network traffic supporting this initial hypothesis.

Comparison of CVE-2024-50623 and CVE-2024-55956

While CVE-2024-50623 was initially listed as a cross-site scripting issue, it was updated on December 10 to reflect unrestricted file upload and download. This vulnerability could lead to remote code execution (RCE) in versions of Cleo’s Harmony, VLTrader, and LexiCom products prior to 5.8.0.24. Attackers could leverage the fact that files are placed in the "autorun" sub-directory within the installation folder and are immediately read, interpreted, and evaluated by the susceptible software [3].

CVE-2024-55956, refers to an unauthenticated user who can import and execute arbitrary Bash or PowerShell commands on the host system by leveraging the default settings of the Autorun directory [4]. Both CVEs have occurred due to separate issues in the “/Synchronization” endpoint.

Investigating post exploitation patterns of activity on Cleo software

Proof of exploitation

Darktrace’s Threat Research analysts investigated multiple cases where devices identified as likely running Cleo software were detected engaging in unusual behavior. Analysts also attempted to identify any possible association between publicly available indicators of compromise (IoCs) and the exploitation of the vulnerability, using evidence of anomalous network traffic.

One case involved an Internet-facing device likely running Cleo VLTrader software (based on its hostname) reaching out to the 100% rare Lithuanian IP 181.214.147[.]164 · AS 15440 (UAB Baltnetos komunikacijos).

This activity occurred in the early hours of December 8 on the network of a customer in the energy sector. Darktrace detected a Cleo server transferring around over 500 MB of data over multiple SSL connections via port 443 to the Lithuanian IP. External research reported that this IP appears to be a callback IP observed in post-exploitation activity of vulnerable Cleo devices [3].

While this device was regularly observed sending data to external endpoints, this transfer represented a small increase in data sent to public IPs and coupled with the rarity of the destination, triggered a model alert as well as a Cyber AI Analyst Incident summarizing the transfer. Unfortunately, due to the encrypted connection no further analysis of the transmitted data was possible. However, due to the rarity of the activity, Darktrace’s Autonomous Response intervened and prevented any further connections to the IP.

 Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Figure 1: Model Alert Event Log show repeated connections to the rare IP, filtered with the rarity metric.
Shows connections to 181.214.147[.]164 and the amount of data transferred.
Figure 2: Shows connections to 181.214.147[.]164 and the amount of data transferred.

On the same day, external connections were observed to the external IP 45.182.189[.]225, along with inbound SSL connections from the same endpoint. OSINT has also linked this IP to the exploitation of Cleo software vulnerabilities [5].

Outgoing connections from a Cleo server to an anomalous endpoint.
Figure 3: Outgoing connections from a Cleo server to an anomalous endpoint.
 Incoming SSL connections from the external IP 45.182.189[.]225.
Figure 4: Incoming SSL connections from the external IP 45.182.189[.]225.

Hours after the last connection to 181.214.147[.]164, the integration detection tool from CrowdStrike, which the customer had integrated with Darktrace, issued an alert. This alert provided additional visibility into host-level processes and highlighted the following command executed on the Cleo server:

“D:\VLTrader\jre\bin\java.exe" -jar cleo.4889

Figure 5: The executed comand “D:\VLTrader\jre\bin\java.exe" -jar cleo.4889 and the Resource Location: \Device\HarddiskVolume3\VLTrader\jre\bin\java.exe.

Three days later, on December 11, another CrowdStrike integration alert was generated, this time following encoded PowerShell command activity on the server. This is consistent with post-exploitation activity where arbitrary PowerShell commands are executed on compromised systems leveraging the default settings of the Autorun directory, as highlighted by Cleo support [6]. According to external researchers , this process initiates connections to an external IP to retrieve JAR files with webshell-like functionality for continued post-exploitation [3]. The IP embedded in both commands observed by Darktrace was 38.180.242[.]122, hosted on ASN 58061(Scalaxy B.V.). There is no OSINT associating this IP with Cleo vulnerability exploitation at the time of writing.

Another device within the same customer network exhibited similar data transfer and command execution activity around the same time, suggesting it had also been compromised through this vulnerability. However, this second device contacted a different external IP, 5.45.74[.]137, hosted on AS 58061 (Scalaxy B.V.).

Like the first device, multiple connections to this IP were detected, with almost 600 MB of data transferred over the SSL protocol.

The Security Integration Detection Model that was triggered  and the PowerShell command observed
Figure 6: The Security Integration Detection Model that was triggered  and the PowerShell command observed
 Incoming connections from the external IP 38.180.242[.]122.
Figure 7: Incoming connections from the external IP 38.180.242[.]122.
Connections to the external IP 5.45.74[.]137.
Figure 8: Connections to the external IP 5.45.74[.]137.
Figure 9: Autonomous Response Actions triggered during the suspicious activities

While investigating potential Cleo servers involved in similar outgoing data activity, Darktrace’s Threat Research team identified two additional instances of likely Cleo vulnerability exploitation used to exfiltrate data outside the network. In those two instances, unusual outgoing data transfers were observed to the IP 176.123.4[.]22 (AS 200019, AlexHost SRL), with around 500 MB of data being exfiltrated over port 443 in one case (the exact volume could not be confirmed in the other instance). This IP was found embedded in encoded PowerShell commands examined by external researchers in the context of Cleo vulnerability exploitation investigations.

Conclusion

Overall, Cleo software represents a critical component of many business operations, being utilized by over 4,000 organizations worldwide. This renders the software an attractive target for threat actors who aim at exploiting internet-facing devices that could be used to compromise the software’s direct users but also other dependent industries resulting in supply chain attacks.

Darktrace / NETWORK was able to capture traffic linked to exploitation of CVE-2024-50623 within models that triggered such as Unusual Activity / Unusual External Data to New Endpoint while its Autonomous Response capability successfully blocked the anomalous connections and exfiltration attempts.

Information on new CVEs, how they're being exploited, and whether they've been patched can be fast-changing, sometimes limited and often confusing. Regardless, Darktrace is able to identify and alert to unusual behavior on these systems, indicating exploitation.

Credit to Maria Geronikolou, Alexandra Sentenac, Emma Fougler, Signe Zaharka and the Darktrace Threat Research team

[related-resource]

Appendices

References

[1] https://blog.httpcs.com/en/file-sharing-and-transfer-software-the-new-target-of-hackers/

[2] https://attackerkb.com/topics/geR0H8dgrE/cve-2024-55956/rapid7-analysis

[3] https://www.huntress.com/blog/threat-advisory-oh-no-cleo-cleo-software-actively-being-exploited-in-the-wild

[4] https://nvd.nist.gov/vuln/detail/CVE-2024-55956

[5] https://arcticwolf.com/resources/blog/cleopatras-shadow-a-mass-exploitation-campaign/

[6] https://support.cleo.com/hc/en-us/articles/28408134019735-Cleo-Product-Security-Advisory-CVE-Pending

[7] https://support.cleo.com/hc/en-us/articles/360034260293-Local-HTTP-Users-Configuration

Darktrace Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

Device / Internet Facing Device with High Priority Alert

Anomalous Server Activity / Rare External from Server

Anomalous Connection / New User Agent to IP Without Hostname

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Detection

Autonomous Response Model Detections

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Cyber AI Analyst Incidents

Unusual External Data Transfer

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

PERSISTENCE – Web Shell

EXFILTRATION - Exfiltration Over C2 Channel

IoC List

IoC       Type    Description + Probability

181.214.147[.]164      IP Address       Likely C2 Infrastructure

176.123.4[.]22            IP Address       Likely C2 Infrastructure

5.45.74[.]137               IP Address           Possible C2 Infrastructure

38.180.242[.]122        IP Address       Possible C2 Infrastructure

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ