Darktrace Recognized as a Leader in the 2025 Gartner® Magic Quadrant™ for Network Detection and Response
Darktrace announces its Leader position in the inaugural Gartner® Magic Quadrant™ for Network Detection and Response (NDR).
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Share
02
Jun 2025
Darktrace has been recognized as a Leader in the first ever Magic Quadrant™ for Network Detection and Response (NDR).
A Gartner Magic Quadrant is a culmination of research in a specific market, giving you a wide-angle view of the relative positions of the market’s competitors. CIOs and CISOs can use this research to make informed decisions about NDR, which is evolving to offer broader threat detection. We encourage our customers to read the full report to get the complete picture.
Darktrace has also received accolades in other recent NDR leadership evaluations including IDC named as market share leader, and KuppingerCole’s heralding us as an Overall Leader, Product Leader, Market Leader and Innovation Leader. We believe we have continued to be identified as a Leader due to the strength of our capabilities in NDR, driven by our unique application of AI in cybersecurity, continuous product innovation, and our ability to execute on a global scale to meet the evolving needs of our customers.
We’re proud of Darktrace’s unrivaled market, and ability to execute effectively in the network security market, reflecting our commitment to delivering high-quality, reliable solutions that meet the evolving needs of our customers.
Gartner MQ for NDR
Why is Darktrace the market share leader and undisputed force in NDR?
Transforming network security and shifting to an AI-led SOC
Darktrace’s Self-Learning AITM understands normal for your entire network, intelligently detecting anomalies and containing sophisticated threats without historical attack data. This approach, based on advanced, unsupervised machine learning, enables Darktrace to catch novel, unknown and insider threats that traditional tools miss and other NDR vendors can’t detect. Darktrace has identified and contained attempted exploits of zero-day vulnerabilities up to 11 days before public disclosure.
We change SOC dynamics with our Cyber AI AnalystTM, which eliminates manual triage and investigation by contextualizing all relevant alerts across your environment, including third-party alerts, and performing end-to-end investigations at machine speed. Cyber AI Analyst gives your team the equivalent of 30 extra full time Level 2 analysts without the hiring overhead2, so you can shift your team away from manual, reactive workflows and uplift them to focus on more proactive tasks.
When combined, Darktrace Self-Learning AI and Cyber AI Analyst go far beyond the capabilities of traditional NDR approaches to completely transform your network security and help your teams operate at the speed and scale of AI.
Coverage across the extended IT enterprise and all-important OT devices
We believe the report validates the business-centric approach that Darktrace uses to deploy AI locally and train it solely on each unique environment, giving our customers tailored security outcomes without compromising on privacy.
This contrasts with other NDR vendors that require cloud connectivity to either deliver full functionality or to regularly update their globally trained models with the latest attack data. This capability is particularly sought after by organizations who are no longer just on-premise, have operational technology (OT) networks, or those that operate in classified environments.
Full visibility across your modern network, including on-premises, virtual networks, hybrid cloud, identities, remote workers and OT devices
Precision threat detection across your modern network to identify known, unknown and insider threats in real-time without relying on rules, signatures or threat intelligence,
10x accelerated incident response times with agentic AI that uplifts your team and enables them to focus on more proactive tasks
Containment of threats with the first autonomous response solution proven to work in the enterprise, stopping attacks from progressing at the earliest stages with precise actions that avoid business disruption
Going beyond traditional NDR to build proactive network resilience
Darktrace does not just stop at threat detection, it helps you prevent threats from occurring and increase your resiliency for when attacks do happen. We help discover and prioritize up to 50% more risks across your environment and optimize incident response processes, reducing the impact of active cyber-attacks using an understanding of your data.
Attack path modeling: By leveraging attack path modeling and AI-driven risk validation, customers can close gaps before they’re exploited, focusing resources where they’ll have the greatest impact.
AI-driven playbooks and breach simulations: With AI-driven playbooks and realistic breach simulations, Darktrace helps your team practice response, strengthen processes, and reduce the impact of real-world incidents. You’re not just reacting; you’re proactively building long-term resilience.
Continued innovation in network security
Darktrace leads innovation in the NDR market with more than 200+ patents and active filings, covering a range of detection, response and AI techniques. Our AI Research Center is foundational to our ongoing innovation, including hundreds of R&D employees examining how AI can be applied to real-world problems and augment human teams.
Trusted by thousands of customersglobally
Our commitment to innovation and patented Self-Learning AITM has protected organizations in all industries from known and novel attacks since 2013, bolstering network security and augmenting human teams for our 10,000 active customers across 110 countries. These organizations place a great deal of trust in Darktrace’s unique approach to cybersecurity and application of AI to detect and respond to threats across their modern network.
A new standard for NDR
Darktrace / NETWORK is not just another NDR tool; we are the most advanced network security platform in the industry that pushes beyond traditional capabilities to protect thousands of organizations against known and novel threats.
From real-time threat detection and autonomous response to proactive risk management, we’re transforming network security from reactive to resilient.
[related-resource]
GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Magic Quadrant is a registered trademark of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.
Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.
References
1, 3 Gartner, Magic Quadrant for Network Detection and Response, by Thomas Lintemuth, Esraa ElTahawy, John Collins, Charanpal Bhogal, 29 May, 2025
2 Darktrace Cyber AI Analyst fleet data, 2023
Download your copy today
Read the Gartner® Magic Quadrant™ report & discover what it means to be recognized in NDR as a leader.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)
Since 2018, Blind Eagle has targeted Latin American organizations using phishing and RATs. Darktrace detected Blind Eagle activity on a customer network involving C2 connectivity, malicious payload downloads and data exfiltration. Without Autonomous Response, the attack escalated, highlighting the need for proactive detection and response defense to counter fast-evolving threats.
Customer Case Study: Leading Petrochemical Manufacturer
An industry leading petrochemical manufacturer uses the Darktrace ActiveAI Security Platform to improve visibility, protect against supply chain attacks, and save the security team hundreds of hours of incident investigation.
Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure
A critical SAP vulnerability, CVE-2025-31324, allows unauthenticated remote code execution via NetWeaver Visual Composer. Despite early mitigation guidance, many systems remain exposed. Darktrace detected exploitation attempts six days before public disclosure, highlighting the importance of proactive, threat-agnostic detection.
Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response
The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.
While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.
Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.
Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”
This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.
[related-resource]
1. Depth of data
There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.
While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.
For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.
Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.
There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.
2. Chain of custody
Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.
In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.
The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.
Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.
3. Automated collection and isolation
When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).
Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.
Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.
4. Ease of use
Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.
While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).
Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.
Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.
Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.
5. Incident preparedness
Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud. Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.
Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:
Run readiness checks and see readiness trends over time
Identify and mitigate issues that could prevent rapid investigation and response
Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
Ensure that data gathered during an investigation can be decrypted
Verify that permissions are aligned with best practices and are capable of supporting incident response efforts
Cloud forensics with Darktrace
Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.
Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.
Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace
Real-world intrusions across Azure and AWS
As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.
This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.
The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.
Case 1 - Microsoft Azure
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.
In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.
Initial access
In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.
With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.
Detection and investigation of the threat
Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.
Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.
“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.
Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.
Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.
Persistence
Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.
Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.
The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.
Case 2 – Amazon Web Services
Figure 5: Simplified timeline of the attack on a customer’s AWS environment
In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.
How the attacker gained access
The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.
Darktrace alerting to malicious activity
This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.
The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.
Internal reconnaissance
Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.
The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.
Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.
Darktrace’s Autonomous Response
In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.
This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.
Continued reconissance
Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.
The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.
Lateral movement attempts via RDP connections
Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.
This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.
Suspicious outbound SSH communication to known threat infrastructure
Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.
Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].
Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.
The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Final containment and collaborative response
Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.
As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.
Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.
Figure 8: Simplified timeline of the attack
Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.
Initial access
On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) networkvia a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.
The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).
Lateral movement and exfiltration
Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.
The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).
What Darktrace detected
Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.
This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.
Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.
Conclusion
This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.
The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.
The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.
Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.
Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)