Blog
/
Network
/
October 13, 2023

Protecting Brazilian Organizations from Malware

Discover how Darktrace DETECT thwarted a banking trojan targeting Brazilian organizations, preventing data theft and informing the customer.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Oct 2023

Nationally Targeted Cyber Attacks

As the digital world becomes more and more interconnected, the threat of cyber-attacks transcends borders and presents a significant concern to security teams worldwide. Yet despite this, some malicious actors have shown a tendency to focus their attacks on specific countries. By employing highly tailored tactics, techniques, and procedures (TTPs) to target users and organizations from one nation, rather than launching more widespread campaigns, threat actors are able to maximize the efficiency and efficacy of their attacks.

What is Guildma and how does it work?

One example can be seen in the remote access trojan (RAT) and information stealer, Guildma. Guildma, also known by the demonic moniker, Astaroth, first appeared in the wild in 2017 and is a Latin America-based banking trojan known to primarily target organizations in Brazil, although has more recently been observed in North America and Europe too [1].

By concentrating their efforts on Brazil, Guildma is able to launch attacks with a high degree of specificity, focussing their language on Brazilian norms, referencing Brazilian institutions, and tailoring their social engineering accordingly. Moreover, considering that Brazilian customers likely represent a relatively small portion of security vendors’ clientele, there may be a limited pool of available indicators of compromise (IoCs). This limitation could significantly impact the efficacy of traditional security measures that rely on signature-based detection methods in identifying emerging threats.

Darktrace vs. Guildma

In June 2023, Darktrace observed a Guildma compromise on the network of a Brazilian customer in the manufacturing sector. The anomaly-based detection capabilities of Darktrace DETECT™ allowed it to identify suspicious activity surrounding the compromise, agnostic of any IoCs or specific signatures of a threat actor. Following the successful detection of the malware, the Darktrace Security Operations Center (SOC) carried out a thorough investigation into the compromise and brought it to the attention of the customer’s security team, allowing them to quickly react and prevent any further escalation.

This early detection by Darktrace effectively shut down Guildma operations on the network before any sensitive data could be gathered and stolen by malicious actors.

Attack Overview

In the case of the Guildma RAT detected by Darktrace, the affected system was a desktop device, ostensibly used by one employee. The desktop was first observed on the customer’s network in April 2023; however, it is possible that the initial compromise took place before Darktrace had visibility over the network. Guildma compromises typically start with phishing campaigns, indicating that the initial intrusion in this case likely occurred beyond the scope of Darktrace’s monitoring [2].

Early indicators

On June 23, 2023, Darktrace DETECT observed the first instance of unusual activity being performed by the affected desktop device, namely regular HTTP POST requests to a suspicious domain, indicative of command-and-control (C2) beaconing activity. The domain used an unusual Top-Level Domain (TLD), with a plausibly meaningful (in Portuguese) second-level domain and a seemingly random 11-character third-level domain, “dn00x1o0f0h.puxaofolesanfoneiro[.]quest”.

Throughout the course of this attack, Darktrace observed additional connections like this, representing something of a signature of the attack. The suspicious domains were typically registered within six months of observation, featured an uncommon TLD, and included a seemingly randomized third-level domain of 6-11 characters, followed by a plausibly legitimate second-level domain with a minimum of 15 characters. The connections to these unusual endpoints all followed a similar two-hour beaconing period, suggesting that Guildma may rotate its C2 infrastructure, using the Multi-Stage Channels TTP (MITRE ID T1104) to evade restrictions by firewalls or other signature-based security tools that rely on static lists of IoCs and “known bads”.

Figure 1: Model Breach Event Log for the “Compromise / Agent Beacon (Long Period)”. The connections at two-hour intervals, including at unreasonably late hours, is consistent with beaconing for C2.

Living-off-the-land with BITS abuse

A week later, on June 30, 2023, the affected device was observed making an unusual Microsoft BITS connection. BitsAdmin is a deprecated administrative tool available on most Windows devices and can be leveraged by attackers to transfer malicious obfuscated payloads into and around an organization’s network. The domain observed during this connection, "cwiufv.pratkabelhaemelentmarta[.]shop”, follows the previously outlined domain naming convention. Multiple open-source intelligence (OSINT) sources indicated that the endpoint had links to malware and, when visited, redirected users to the Brazilian versions of WhatsApp and Zoom. This is likely a tactic employed by threat actors to ensure users are unaware of suspicious domains, and subsequent malware downloads, by redirected them to a trusted source.

Figure 2: A screenshot of the Model Breach log summary of the “Unusual BITS Activity” model breach. The breach log contains key details such as the ASN, hostname, and user agent used in the breaching connection.

Obfuscated Tooling Downloads

Within one minute of the suspicious BITS activity, Darktrace detected the device downloading a suspicious file from the aforementioned endpoint, (cwiufv.pratkabelhaemelentmarta[.]shop). The file in question appeared to be a ZIP file with the 17-digit numeric name query, namely “?37627343830628786”, with the filename “zodzXLWwaV.zip”.

However, Darktrace DETECT recognized that the file extension did not match its true file type and identified that it was, in fact, an executable (.exe) file masquerading as a ZIP file. By masquerading files downloads, threat actors are able to make their malicious files seem legitimate and benign to security teams and traditional security tools, thereby evading detection. In this case, the suspicious file in question was indeed identified as malicious by multiple OSINT sources.

Following the initial download of this masqueraded file, Darktrace also detected subsequent downloads of additional executable files from the same endpoint.  It is possible that these downloads represented Guildma actors attempting to download additional tooling, including the information-stealer widely known as Astaroth, in order to begin its data collection and exfiltration operations.

Figure 3: A screenshot of a graph produced by the Threat Visualizer of the affected device's external connections. The visual aid marks breaches with red and orange dots, creating a more intuitive explanation of observed behavior.

Darktrace SOC

The successful detection of the masqueraded file transfer triggered an Enhanced Monitoring model breach, a high-fidelity model designed to detect activity that is more likely indicative of an ongoing compromise.  

This breach was immediately escalated to the Darktrace SOC for analysis by Darktrace’s team of expert analysts who were able to complete a thorough investigation and notify the customer’s security team of the compromise in just over half an hour. The investigation carried out by Darktrace’s analysts confirmed that the activity was, indeed, malicious, and provided the customer’s security team with details around the extent of the compromise, the specific IoCs, and risks this compromise posed to their digital environment. This information empowered the customer’s security team to promptly address the issue, having a significant portion of the investigative burden reduced and resolved by the round-the-clock Darktrace analyst team.

In addition to this, Cyber AI Analyst™ launched an investigation into the ongoing compromise and was able to connect the anomalous HTTP connections to the subsequent suspicious file downloads, viewing them as one incident rather than two isolated events. AI Analyst completed its investigation in just three minutes, upon which it provided a detailed summary of events of the activity, further aiding the customer’s remediation process.

Figure 4: CyberAI Analyst summary of the suspicious activity. A prose summary of the breach activity and the meaning of the technical details is included to maintain an easily digestible stream of information.

Conclusion

While the combination of TTPs observed in this Guildma RAT compromise is not uncommon globally, the specificity to targeting organizations in Brazil allows it to be incredibly effective. By focussing on just one country, malicious actors are able to launch highly specialized attacks, adapting the language used and tailoring the social engineering effectively to achieve maximum success. Moreover, as Brazil likely represents a smaller segment of security vendors’ customers, therefore leading to a limited pool of IoCs, attackers are often able to evade traditional signature-based detections.

Darktrace DETECT’s anomaly-based approach to threat detection allows for effective detection, mitigation, and response to emerging threats, regardless of the specifics of the attack and without relying on threat intelligence or previous IoCs. Ultimately in this case, Darktrace was able to identify the suspicious activity surrounding the Guildma compromise and swiftly bring it to the attention of the customer’s security team, before any data gathering, or exfiltration activity took place.

Darktrace’s threat detection capabilities coupled with its expert analyst team and round-the-clock SOC response is a highly effective addition to an organization’s defense-in-depth, whether in Brazil or anywhere else around the world.

Credit to Roberto Romeu, Senior SOC Analyst, Taylor Breland, Analyst Team Lead, San Francisco

References

https://malpedia.caad.fkie.fraunhofer.de/details/win.astaroth

https://www.welivesecurity.com/2020/03/05/guildma-devil-drives-electric/  

Appendices

Darktrace DETECT Model Breaches

  • Compromise / Agent Beacon (Long Period)
  • Device / Unusual BITS Activity
  • Anomalous File / Anomalous Octet Stream (No User Agent)
  • Anomalous File / Masqueraded File Transfer (Enhanced Monitoring Model)
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

List of IoCs

IoC Type - Description + Confidence

5q710e1srxk.broilhasoruikaliventiladorrta[.]shop - Domain - Likely C2 server

m2pkdlse8md.roilhasohlcortinartai[.]hair - Domain - Likely C2 server

cwiufv.pratkabelhaemelentmarta[.]shop - Domain - C2 server

482w5pct234.jaroilcasacorkalilc[.]ru[.]com - Domain - C2 server

dn00x1o0f0h.puxaofolesanfoneiro[.]quest - Domain - Likely C2 server

10v7mybga55.futurefrontier[.]cyou - Domain - Likely C2 server

f788gbgdclp.growthgenerator[.]cyou - Domain - Likely C2 server

6nieek.satqabelhaeiloumelsmarta[.]shop - Domain - Likely C2 server

zodzXLWwaV.zip (SHA1 Hash: 2a4062e10a5de813f5688221dbeb3f3ff33eb417 ) - File hash - Malware

IZJQCAOXQb.zip (SHA1 Hash: eaec1754a69c50eac99e774b07ef156a1ca6de06 ) - File hash - Likely malware

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Multi-Stage Channels - T1104

BITS Jobs - T1197

Application Layer Protocol: Web Protocols - T1071.001

Acquire Infrastructure: Web Services - T1583.006

Obtain Capabilities: Malware - T1588.001

Masquerading - T1036

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst

More in this series

No items found.

Blog

/

/

August 13, 2025

ISO/IEC 42001: 2023: A milestone in AI standards at Darktrace  

Default blog imageDefault blog image

Darktrace announces ISO/IEC 42001 accreditation

Darktrace is thrilled to announce that we are one of the first cybersecurity companies to achieve ISO/IEC 42001 accreditation for the responsible management of AI systems. This isn’t just a milestone for us, it’s a sign of where the AI industry is headed. ISO/IEC 42001 is quickly emerging as the global benchmark for separating vendors who truly innovate with AI from those who simply market it.

For customers, it’s more than a badge, it’s assurance that a vendor’s AI is built responsibly, governed with rigor, and backed by the expertise of real AI teams, keeping your data secure while driving meaningful innovation.

This is a critical milestone for Darktrace as we continue to strengthen our offering, mature our governance and compliance frameworks for AI management, expand our research and development capabilities, and further our commitment to the development of responsible AI.  

It cements our commitment to providing secure, trustworthy and proactive cybersecurity solutions that our customers can rely on and complements our existing compliance framework, consisting of certifications for:

  • ISO/IEC 27001:2022 – Information Security Management System
  • ISO/IEC 27018:2019 – Protection of Personally Identifiable Information in Public Cloud Environments
  • Cyber Essentials – A UK Government-backed certification scheme for cybersecurity baselines

What is ISO/IEC 42001:2023?

In response to the unique challenges that AI poses, the International Organization for Standardization (ISO) introduced the ISO/IEC 42001:2023 framework in December 2023 to help organizations providing or utilizing AI-based products or services to demonstrate responsible development and use of AI systems. To achieve the accreditation, organizations are required to establish, implement, maintain, and continually improve their Artificial Intelligence Management System (AIMS).

ISO/IEC 42001:2023 is the first of its kind, providing valuable guidance for this rapidly changing field of technology. It addresses the unique ethical and technical challenges AI poses by setting out a structured way to manage risks such as transparency, accuracy and misuse without losing opportunities. By design, it balances the benefits of innovation against the necessity of a proper governance structure.

Being certified means the organization has met the requirements of the ISO/IEC 42001 standard, is conforming to all applicable regulatory and legislative requirements, and has implemented thorough processes to address AI risks and opportunities.

What is the  ISO/IEC 42001:2023 accreditation process?

Darktrace partnered with BSI over an 11-month period to undertake the accreditation. The process involved developing and implementing a comprehensive AI management system that builds on our existing certified frameworks, addresses the risks and opportunities of using and developing cutting-edge AI systems, underpins our AI objectives and policies, and meets our regulatory and legal compliance requirements.

The AI Management System, which takes in our people, processes, and products, was extensively audited by BSI against the requirements of the standard, covering all aspects spanning the design of our AI, use of AI within the organization, and our competencies, resources and HR processes. It is an in-depth process that we’re thrilled to have undertaken, making us one of the first in our industry to achieve certification for a globally recognized AI system.

The scope of Darktrace’s certification is particularly wide due to our unique Self-Learning approach to AI for cybersecurity, which uses multi-layered AI systems consisting of varied AI techniques to address distinct cybersecurity tasks. The certification encompasses production and provision of AI systems based on anomaly detection, clustering, classifiers, regressors, neural networks, proprietary and third-party large language models for proactive, detection, response and recovery cybersecurity applications. Darktrace additionally elected to adopt all Annex A controls present in the ISO/IEC 42001 standard.

What are the benefits of an AI Management System?

While AI is not a new or novel concept, the AI industry has accelerated at an unprecedented rate in the past few years, increasing operational efficiency, driving innovation, and automating cumbersome processes in the workplace.

At the same time, the data privacy, security and bias risks created by rapid innovation in AI have been well documented.

Thus, an AI Management System enables organizations to confidently establish and adhere to governance in a way that conforms to best practice, promotes adherence, and is in line with current and emerging regulatory standards.

Not only is this vital in a unique and rapidly evolving field like AI, it additionally helps organization’s balance the drive for innovation with the risks the technology can present, helping to get the best out of their AI development and usage.

What are the key components of ISO/IEC 42001?

The Standard puts an emphasis on responsible AI development and use, requiring organizations to:

  • Establish and implement an AI Management System
  • Commit to the responsible development of AI against established, measurable objectives
  • Have in place a process to manage, monitor and adapt to risks in an effective manner
  • Commit to continuous improvement of their AI Management System

The AI Standard is similar in composition to other ISO standards, such as ISO/IEC 27001:2022, which many organizations may already be familiar with. Further information as to the structure of ISO/IEC 42001 can be found in Annex A.

What it means for Darktrace’s customers

Our certification against ISO/IEC 42001 demonstrates Darktrace’s commitment to delivering industry-leading Self-Learning AI in the name of cybersecurity resilience. Our stakeholders, customers and partners can be confident that Darktrace is responsibly, ethically and securely developing its AI systems, and is managing the use of AI in our day-to-day operations in a compliant, secure and ethical manner. It means:

  • You can trust our AI: We can demonstrate our AI is developed responsibly, in a transparent manner and in accordance with ethical rules. For more information and to learn about Darktrace's responsible AI in cybersecurity approach, please see here.
  • Our products are backed by innovation and integrity: Darktrace drives cutting edge AI innovation with ethical governance and customer trust at its core.
  • You are partnering with an organization which stays ahead of regulatory changes: In an evolving AI landscape, partnering with Darktrace helps you to stay prepared for emerging compliance and regulatory demands in your supply chain.

Achieving ISO/IEC 42001:2023 certification is not just a checkpoint for us. It represents our unwavering commitment to setting a higher standard for AI in cybersecurity. It reaffirms our leadership in building and implementing responsible AI and underscores our mission to continuously innovate and lead the way in the industry.

Why ISO/IEC 42001 matters for every AI vendor you trust

In a market where “AI” can mean anything from a true, production-grade system to a thin marketing layer, ISO/IEC 42001 acts as a critical differentiator. Vendors who have earned this certification aren’t just claiming they build responsible AI, they’ve proven it through an independent, rigorous audit of how they design, deploy, and manage their systems.

For you as a customer, that means:

You know their AI is real: Certified vendors have dedicated, skilled AI teams building and maintaining systems that meet measurable standards, not just repackaging off-the-shelf tools with an “AI” label.

Your data is safeguarded: Compliance with ISO/IEC 42001 includes stringent governance over data use, bias, transparency, and risk management.

You’re partnering with innovators: The certification process encourages continuous improvement, meaning your vendor is actively advancing AI capabilities while keeping ethics and security in focus.

In short, ISO/IEC 42001 is quickly becoming the global badge of credible AI development. If your vendor can’t show it, it’s worth asking how they manage AI risk, whether their governance is mature enough, and how they ensure innovation doesn’t outpace accountability.

Annex A: The Structure of ISO/IEC 42001

ISO/IEC 42001 has requirements for which seven adherence is required for an organization seeking to obtain or maintain its certification:

  • Context of the organization – organizations need to demonstrate an understanding of the internal and external factors influencing the organization’s AI Management System.
  • Leadership – senior leadership teams need to be committed to implementing AI governance within their organizations, providing direction and support across all aspects AI Management System lifecycle.
  • Planning – organizations need to put meaningful and manageable processes in place to identify risks and opportunities related to the AI Management System to achieve responsible AI objectives and mitigate identified risks.
  • Support – demonstrating a commitment to provisioning of adequate resources, information, competencies, awareness and communication for the AI Management System is a must to ensure that proper oversight and management of the system and its risks can be achieved.
  • Operation – establishing processes necessary to support the organization’s AI system development and usage, in conformance with the organization’s AI policy, objectives and requirements of the standard. Correcting the course of any deviations within good time is paramount.
  • Performance evaluation – the organization must be able to demonstrate that it has the capability and willingness to regularly monitor and evaluate the performance of the AI Management System effectively, including actioning any corrections and introducing new processes where relevant.
  • Improvement – relying on an existing process will not be sufficient to ensure compliance with the AI Standard. Organizations must commit to monitoring of existing systems and processes to ensure that the AI Management System is continually enhanced and improved.

To assist organizations in seeking the above, four annexes are included within the AI Standard’s rubric, which outline the objectives and measures an organization may wish to implement to address risks related to the design and operation of their AI Management System through the introduction of normative controls. Whilst they are not prescriptive, Darktrace has implemented the requirements of these Annexes to enable it to appropriately demonstrate the effectiveness of its AI Management System. We have placed a heavy emphasis on Annex A which contains these normative controls which we, and other organizations seeking to achieve certification, can align with to address the objectives and measures, such as:

  • Enforcement of policies related to AI.
  • Setting responsibilities within the organization, and expectation of roles and responsibilities.
  • Creating processes and guidelines for escalating and handling AI concerns.
  • Making resources for AI systems available to users.
  • Assessing impacts of AI systems internally and externally.
  • Implementing processes across the entire AI system life cycle.
  • Understanding treatment of Data for AI systems.
  • Defining what information is, and should be available, for AI systems.
  • Considering and defining use cases for the AI systems.
  • Considering the impact of the AI System on third-party and customer relationships.

The remaining annexes provide guidance on implementing Annex A’s controls, objectives and primary risk sources of AI implementation, and considering how the AI Management System can be used across domains or sectors responsibly.

[related-resource]

Continue reading
About the author

Blog

/

/

August 12, 2025

Minimizing Permissions for Cloud Forensics: A Practical Guide to Tightening Access in the Cloud

Default blog imageDefault blog image

Most cloud environments are over-permissioned and under-prepared for incident response.

Security teams need access to logs, snapshots, and configuration data to understand how an attack unfolded, but giving blanket access opens the door to insider threats, misconfigurations, and lateral movement.

So, how do you enable forensics without compromising your security posture?

The dilemma: balancing access and security

There is a tension between two crucial aspects of cloud security that create a challenge for cloud forensics.

One aspect is the need for Security Operations Center (SOC) and Incident Response (IR) teams to access comprehensive data for investigating and resolving security incidents.

The other conflicting aspect is the principle of least privilege and minimal manual access advocated by cloud security best practices.

This conflict is particularly pronounced in modern cloud environments, where traditional physical access controls no longer apply, and infrastructure-as-code and containerization have transformed the landscape.

There are several common but less-than-ideal approaches to this challenge:

  • Accepting limited data access, potentially leaving incidents unresolved
  • Granting root-level access during major incidents, risking further compromise

Relying on cloud or DevOps teams to retrieve data, causing delays and potential miscommunication

[related-resource]

Challenges in container forensics

Containers present unique challenges for forensic investigations due to their ephemeral and dynamic nature. The orchestration and management of containers, whether on private clusters or using services like AWS Elastic Kubernetes Service (EKS), introduce complexities in capturing and analyzing forensic data.

To effectively investigate containers, it's often necessary to acquire the underlying volume of a node or perform memory captures. However, these actions require specific Identity and Access Management (IAM) and network access to the node, as well as familiarity with the container environment, which may not always be straightforward.

An alternative method of collection in containerized environments is to utilize automated tools to collect this evidence. Since they can detect malicious activity and collect relevant data without needing human input, they can act immediately, securing evidence that might be lost by the time a human analyst is available to collect it manually.

Additionally, automation can help significantly with access and permissions. Instead of analysts needing the correct permissions for the account, service, and node, as well as deep knowledge of the container service itself, for any container from which they wish to collect logs. They can instead collect them, and have them all presented in one place, at the click of a button.

A better approach: practical strategies for cloud forensics

It's crucial to implement strategies that strike a balance between necessary access and stringent security controls.

Here are several key approaches:

1. Dedicated cloud forensics accounts

Establishing a separate cloud account or subscription specifically for forensic activities is foundational. This approach isolates forensic activities from regular operations, preventing potential contamination from compromised environments. Dedicated accounts also enable tighter control over access policies, ensuring that forensic operations do not inadvertently expose sensitive data to unauthorized users.

A separate account allows for:

  • Isolation: The forensic investigation environment is isolated from potentially compromised environments, reducing the risk of cross-contamination.
  • Tighter access controls: Policies and controls can be more strictly enforced in a dedicated account, reducing the likelihood of unauthorized access.
  • Simplified governance: A clear and simplified chain of custody for digital evidence is easier to maintain, ensuring that forensic activities meet legal and regulatory requirements.

For more specifics:

2. Cross-account roles with least privilege

Using cross-account IAM roles, the forensics account can access other accounts, but only with permissions that are strictly necessary for the investigation. This ensures that the principle of least privilege is upheld, reducing the risk of unauthorized access or data exposure during the forensic process.

3. Temporary credentials for just-in-time access

Leveraging temporary credentials, such as AWS STS tokens, allows for just-in-time access during an investigation. These credentials are short-lived and scoped to specific resources, ensuring that access is granted only when absolutely necessary and is automatically revoked after the investigation is completed. This reduces the window of opportunity for potential attackers to exploit elevated permissions.

For AWS, you can use commands such as:

aws sts get-session-token --duration-seconds 43200

aws sts assume-role --role-arn role-to-assume --role-session-name "sts-session-1" --duration-seconds 43200

For Azure, you can use commands such as:

az ad app credential reset --id <appId> --password <sp_password> --end-date 2024-01-01

For more details for Google Cloud environments, see “Create short-lived credentials for a service account” and the request.time parameter.

4. Tag-based access control

Pre-deploying access control based on resource tags is another effective strategy. By tagging resources with identifiers like "Forensics," access can be dynamically granted only to those resources that are relevant to the investigation. This targeted approach minimizes the risk of overexposure and ensures that forensic teams can quickly and efficiently access the data they need.

For example, in AWS:

Condition: StringLike: aws:ResourceTag/Name: ForensicsEnabled

Condition: StringLike: ssm:resourceTag/SSMEnabled: True

For example, in Azure:

"Condition": "StringLike(Resource[Microsoft.Resources/tags.example_key], '*')"

For example, in Google Cloud:

expression: > resource.matchTag('tagKeys/ForensicsEnabled', '*')

Tighten access, enhance security

The shift to cloud environments demands a rethinking of how we approach forensic investigations. By implementing strategies like dedicated cloud forensic accounts, cross-account roles, temporary credentials, and tag-based access control, organizations can strike the right balance between access and security. These practices not only enhance the effectiveness of forensic investigations but also ensure that access is tightly controlled, reducing the risk of exacerbating an incident or compromising the investigation.

Find the right tools for your cloud security

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

In addition to having these forensics capabilities, Darktrace / CLOUD is a real-time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI